Field of Natural Sciences

Research in natural science is carried out by the Engineering Research Institute “Ventspils International Radio Astronomy Centre” (ERI VIRAC) and the Faculty of Information Technologies (FIT).


Key research areas include astronomy and astrophysics, engineering, mathematical modeling, signal processing, space technologies, ICT, electronics, machine learning, and artificial intelligence.

  • Science in Engineering Research Institute "Ventspils International Radio Astronomy Centre"

  • Science in Faculty of Information Technologies

    Ventspils University of Applied Sciences (VUAS) research Entity in Natural sciences is represented by two of its departments – Faculty of Information Technologies (FIT) and Engineering Research Institute “Ventspils International Radio Astronomy Centre” (VIRAC).


    FIT offers internationally accredited education programmes and conducts research in information technology, computer engineering, electronics, telecommunications, computer control, and computer science. It is inseparably linked with VIRAC, as several VIRAC researchers also serve as academic and research staff at FIT. This close connection fosters interdisciplinary collaboration and knowledge exchange.


    FIT provides education in two core areas—computer science and electronics engineering—which are also reflected in its research priorities. It boasts some of the most modern educational laboratories in Latvia for electronics, prototyping, robotics, and automation, encouraging student participation in cutting-edge research.


    Many VIRAC and FIT staff members work across both departments, ensuring effective knowledge transfer between researchers, engineers, and students. FIT students actively contribute to research activities, laying the foundation for scientific careers and helping to develop a new generation of regional scientists and engineers.


    FIT is also investing in the sustainable development of its own research capacity, particularly in the field of machine learning. This effort aims to establish a robust research direction within the faculty itself, complementing the work done at VIRAC and expanding into areas beyond radio astronomy, while remaining aligned with computer science and information technology.



    In addition to academic and research activities, FIT engages in outreach across Latvia. Staff members lead practical training sessions in schools and host STEM workshops in FIT laboratories. A popular student tradition is the launch of a self-built stratospheric probe every few years (e.g., IRBE-6 in 2024), which draws public attention and inspires future STEM professionals.


    The visibility of the radio telescopes and popular science lectures—delivered in schools or through NGOs such as the Young Astronomers’ Club—further increase public engagement. To date, FIT and VIRAC have visited over 50 secondary schools across Latvia, offering seminars in STEM and promoting educational opportunities at VUAS.


    Together, FIT and VIRAC strengthen the interdisciplinary foundation of Natural Sciences at VUAS through joint research and public outreach, advancing both scientific knowledge and regional development.

Events and Highlights

By Rota Rulle October 7, 2025
This academic year, the VUAS Lifelong Learning Centre is offering a new lecture cycle, "Science and Culture - for Society", featuring lectures by renowned scientists and distinguished personalities in Latvia, held once a month on Saturdays. On October 11, lectures by Juris Dzelmes, a leading researcher at the Institute of Chemical Physics of the University of Latvia, are scheduled to discuss the challenges of artificial intelligence. In parallel with research in the field of chemical physics, J. Dzelme's interests encompass problems in educational management, philosophy, psychology, and art, and he will discuss the possibilities, development, and threats of artificial intelligence. October 11 at 7 p.m. 11.30–14.30, at Ventspils University of Applied Sciences, J. Dzelme will give an insight into the following topics: Digitalisation, robotisation, artificial intelligence (AI) and superintelligence; Emotions, free will and creativity in artificial and natural neural networks (AI and psyche); AI ethics, value and goal modelling; Supporting communities in an AI-driven world through art and philosophy, through physics and psychology. Application: https://www.venta.lv/muzizglitiba/pieteiksanas Price: 35 EUR More information: mic@venta.lv, tel. 63629650 
By Rota Rulle October 3, 2025
On September 26, the European Researchers’ Night events took place throughout Latvia, where colleges, universities, and scientific institutes opened their doors to visitors, offering a variety of free activities. At the VIZIUM Science Center, activities organized by Ventspils University of Applied Sciences and the Ventspils International Radio Astronomy Center (VIRAC) introduced visitors to the processes of star formation, comets, and other small bodies of the Solar System. Throughout the evening, visitors played language games, observed stars and planets through a telescope, and tried their hand at solving a mathematical puzzle – the Tower of Hanoi. Guests also had the opportunity to test their knowledge in various quizzes related to space and languages, gaining new insights along the way.
By Rota Rulle September 29, 2025
If you want to feel at home faster in our city of Ventspils and like to build your confidence in everyday conversations, and looking to make friends and integrate into the Latvian community, then join the first Language Café meeting – organized by COLOURS WP5 (EDI)! It’s a relaxed and welcoming meet-up where international and local students come together to: Practice different languages Make new friends Enjoy light snacks and friendly conversations No grammar tests, no pressure – just real conversations in small, friendly groups. Come as you are and enjoy the exchange of cultures and languages! Register HERE Tuesday, 30th September at D0, 16.30!
By Rota Rulle September 25, 2025
On 24 September 2025, a delegation from the University of Latvia Faculty of Science and Technology (UL FST) visited Ventspils University of Applied Sciences (VUAS). The UL delegation included FST Dean Aigars Ekers, Acting Vice-Dean for Science Sandris Lācis, Vice-Dean for Studies Aiga Švede, Vice-Dean for Development Diāna Šmite, and Head of the Department of Physics Tija Sīle. VUAS and the Ventspils International Radio Astronomy Centre (VIRAC) were represented by Rector Andris Vaivads, Dean of the Faculty of Information Technology Vairis Caune, Head of the Doctoral School Lilita Sproģe, Chairman of the VUAS Senate and, at the same time, Chairman of the VIRAC Scientific Council Juris Freimanis, along with other researchers and teaching staff. The visit began with a trip to the VIRAC radio telescope complex in Irbene, where senior researcher Artis Aberfelds introduced the guests to the telescopes, associated equipment, and laboratories, and their use in astronomical observations. After a joint lunch at VUAS café Panorāma, Jānis Šate showed the guests the university's electronics teaching laboratories and their equipment. The event reached a productive apogee in a joint discussion lasting around two hours in the VUAS Rectorate conference hall. At its opening, Rector Andris Vaivads gave a presentation about VUAS, followed by a presentation by, Juris Kalvāns, Head of the VIRAC Astronomy and Astrophysics Department, about the main research directions in VIRAC astronomy, while researcher Vladislavs Bezrukovs outlined VIRAC's extensive international cooperation, particularly its participation in European Research Infrastructure Consortia (ERIC). “The event reached a productive apogee in a joint discussion lasting around two hours in the VUAS Rectorate conference hall, where Rector Andris Vaivads gave a presentation about VUAS.” The discussion covered a range of topics related to science and studies. Both sides expressed interest in officially involving VUAS in the UL Master’s programme in Physics, alongside Daugavpils University. VIRAC researchers already teach several astronomy courses within this programme. The potential involvement of the VIRAC high-performance computing cluster in a new computing consortium, where UL is expected to take the leading role, was also discussed. Looking further ahead, UL is also interested in gaining access to VIRAC satellite communication abilities. Finally, the UL–VUAS cooperation agreement is to be renewed, including matters of collaboration in doctoral studies and research, as well as Latvia’s participation in the International Astronomical Union. The meeting took place in a frendly atmosphere, giving confidence in the successful continuation of cooperation between UL and VUAS.
By Rota Rulle September 9, 2025
On September 1 of this year, Ventspils University of Applied Sciences launched a new European Union (EU) co-funded project “Modernization of the Study Environment of Ventspils University of Applied Sciences”, No. 4.2.1.8/2/25/I/007. The project implementation period is 24 months, until August 31, 2027. The project aims to ensure the modernization of the study environment of Ventspils University of Applied Sciences, which includes the improvement and development of the infrastructure of the bachelor's study program "Computer Science" and the professional bachelor's study program "Electronics Engineering". To ensure high-quality and competitive education, targeted measures will be implemented within the project framework, focusing on the technological modernization of study spaces, enhancing the material and technical base, and introducing information and communication technologies (ICT). These engineering and IT programs are strategically important for the sustainable economic growth of the Ventspils region and the entire country of Latvia, preparing highly qualified specialists to promote digital transformation and technological development. During the project, the infrastructure of laboratories and classrooms will be enhanced to ensure that study rooms are equipped with the latest technologies and meet the standards of modern higher education. The latest technologies and equipment will be purchased and introduced, significantly expanding students' opportunities to work with current industry tools and software, thereby preparing them to work with technologies widely used in the industry. In addition, it is planned to continue adapting the digital infrastructure to modern requirements, allowing for the implementation of the hybrid and distance learning process in accordance with current educational trends. The modernization carried out will significantly improve the quality of studies and compliance with labour market requirements, providing students with the opportunity to acquire practical skills and adapt to the growing requirements of the industry. This project will not only improve the study environment and promote the integration of innovations into the learning process, but will also contribute to the development of Ventspils University of Applied Sciences as a higher education and research center in Latvia and beyond, attracting students from the region and the country, as well as from abroad. The total cost of the project “Modernization of the study environment of Ventspils University of Applied Sciences”, No. 4.2.1.8/2/25/I/007, is 215,083.00 EUR, of which the planned amount of the European Regional Development Fund is 85% of the eligible expenses – 182,820.55 EUR, and the amount of state funding is 15% of the eligible costs – 32,262.45 EUR.
By Martina Bertāne September 3, 2025
We are pleased to invite you to participate in the VIRAC Summer School on Pulsar Observations at Centimetre and Metre Wavelengths: Ventspils, Latvia |September 8–19, 2025 This intensive and inspiring summer school is designed for Master’s students, PhD candidates, and early-career researchers in astronomy and astrophysics. The event is hosted by Ventspils University of Applied Sciences. Key Topics: Pulsar observations with the LOFAR telescope Pulsar astronomy fundamentals Observation planning Pulsar data processing and analysis Venue: Engineering Research Institute – Ventspils International Radio Astronomy Centre, Ventspils University of Applied Sciences, Room 407
By Rota Rulle August 25, 2025
The Latvian Rural Advisory and Education Centre, in cooperation with project partners, one of which is Ventspils University of Applied Sciences, invites you to an online opening seminar on August 27 at 10:00 AM on the new My Farm livestock section, which helps to: accumulate and analyze farm data, monitor animal welfare, plan work and make data-driven decisions, save time in preparing reports. At the seminar: You will learn how this idea originated and why it remains relevant today. You will hear about the experiences and benefits of experts for Latvian livestock farmers. You will see a practical demonstration of how to use the tool on your farm. You will receive answers to your important questions. Questions can be asked in the comments during the live broadcast. Live on Facebook profiles @LLKCOzolnieki and @Manslauks, as well as www.llkc.lv Link to the event: Facebook: https://www.facebook.com/events/1290216356070792 The event is a part of the project No.: 21-00-A01611-000017 "Efficient Environmental and Animal Welfare Farm Monitoring". Project Objective: The long-term goal is to promote sustainability and competitiveness in the Latvian livestock sector, in line with the guidelines of the European Green Deal. In recent years, global environmental and climate issues have become increasingly relevant, and it can be assumed that in the future, consumers will demand products produced in an environmentally friendly manner. These future challenges compel farmers to reassess their current management practices and explore environmental and sustainability issues. To achieve this goal, an innovative farm monitoring system will be developed for the livestock sector, ensuring comprehensive data collection and analysis in one place. This system will promote compliance with animal welfare requirements, facilitate sustainable and environmentally friendly farming practices, and enable the monitoring of daily activities, ultimately reducing the time spent on preparing various reports.
By Rota Rulle August 22, 2025
On August 18, 2025, Dr. Evanthia Hatziminaoglou from the European Southern Observatory (ESO) and the Instituto de Astrofísica de Canarias (IAC) delivered an insightful invited talk at the University of Latvia. The presentation provided a comprehensive overview of cutting-edge astronomical research and advancements, focusing on ESO's contributions, the ALMA telescope, the Atacama Large Aperture Submillimetre Telescope (AtLAST), and the study of quasars. Dr. Hatziminaoglou highlighted ESO's role as the leading intergovernmental astronomy organization, encompassing 16 member states and strategic partnerships with Chile and Australia. The talk showcased ESO's groundbreaking facilities, including the Very Large Telescope (VLT) at Paranal and the upcoming Extremely Large Telescope (ELT), set to be the largest optical/infrared telescope in the world. The presentation also delved into ALMA's capabilities, emphasizing its precision in resolving small details and its ongoing upgrades to enhance sensitivity. Dr. Hatziminaoglou discussed the AtLAST concept, a next-generation 50-meter single-dish observatory powered by renewable energy, designed to bridge gaps in angular scales, sensitivity, and mapping speed in submillimeter astronomy. A significant portion of the talk focused on the study of quasars, exploring their environments, star formation rates, and the triggers of extreme star formation in quasar hosts. Dr. Hatziminaoglou shared findings on multiplicities around SDSS quasars, revealing how submillimeter counterparts and redshift influence star formation rates and environments. In addition to the scientific presentation, there was a lively discussion on potential collaboration between the University of Latvia, Riga Technical University, and Ventspils University of Applied Sciences. The discussion emphasized creating pathways for Latvian researchers and students to engage with ESO and ALMA facilities, opening new opportunities for joint projects, training, and integration into international astronomy networks. This engaging presentation underscored the synergy between ESO's facilities, ALMA, and AtLAST, paving the way for future discoveries in astronomy. Dr. Hatziminaoglou's talk was an inspiring showcase of the collaborative efforts driving innovation in the field and inspiring the next generation of astronomers. Dr. Hatziminaoglou's talk was an inspiring showcase of the collaborative efforts driving innovation in the field and inspiring the next generation of astronomers. The seminar was organized within the framework of the project “Ventspils University of Applied Sciences` International Cooperation and Innovation for the Development of Latvia’s Smart Specialisation” (No. 1.1.1.5/3/25/I/012), co-financed by the European Regional Development Fund.
By Rota Rulle July 30, 2025
Today, the field of radio astronomy has experienced a resurgence in ‘transient’ science, with more and more astronomical phenomena found to be active on timescales of months, weeks, and even within a single day. For example, high-mass stars form in short, intense bursts of mass accretion that display active variations on day-long timescales. The use of single-baseline interferometers (two telescopes connected together) has been known in astronomy since the 1940s. However, demand for this observing technique was soon overtaken by the development of interferometers comprising large numbers of radio telescope dishes. As demand for aperture synthesis arrays increased, the time available for each observing programme became more limited. The recent emphasis on transient science has renewed the demand for facilities capable of high-cadence monitoring of brightness variations in radio emission—an area in which the now uncommon single-baseline radio interferometer is particularly well suited. The aim of this project is the development of the Irbene Single-Baseline Interferometer (ISBI), designed to detect variations in the radio emission associated with high-mass star-forming regions. The ISBI will be used to monitor both radio continuum and maser emission from high-mass protostars. This will enable clearer distinctions to be drawn between currently untested and competing theoretical models proposed to explain the enigmatic variability recently linked to the formation of high-mass stars. With recent discoveries confirming rapid accretion bursts in high-mass protostars, time-domain radio astronomy has become a key frontier in understanding the formation of massive stars. These short-lived accretion episodes give rise to measurable variations in both radio continuum and maser emission. However, existing large-scale arrays are often oversubscribed and are not optimised for long-term, targeted monitoring of such sources. “The method will enable clearer distinctions to be drawn between currently untested and competing theoretical models proposed to explain the enigmatic variability recently linked to the formation of high-mass stars.” High-cadence, long-term monitoring, such as that possible by ISBI, greatly benefits from automation, which makes it much easier to carry out long-term, frequent monitoring of space signals, from planning observations to processing the data. Latvian scientists have created a unique set of tools and automated systems for the ISBI, turning it into a one-of-a-kind instrument with capabilities not found anywhere else. ISBI stands out because, unlike single-dish telescopes or large VLBI arrays, it can both detect weak signals and track them regularly over time. This makes it ideal for studying the changing radio emissions of massive star-forming regions, helping researchers understand processes like matter falling onto stars and the jets they eject. Thanks to automation, almost the whole workflow runs smoothly, allowing continuous and efficient monitoring of these fascinating cosmic events.
Show More