Cosmic flashes pinpointed to a surprising location in space

February 23, 2022

Astronomers have been surprised by the closest source of mysterious flashes in the sky called fast radio bursts. Precision measurements with radio telescopes reveal that the bursts are made among old stars, and in a way that no one was expecting. The source of the flashes, in nearby spiral galaxy M 81, is the closest of its kind to Earth.


Fast radio bursts are unpredictable, extremely short flashes of light from space. Astronomers have struggled to understand them ever since they were first discovered in 2007. So far, they have only ever been seen by radio telescopes.

 

Each flash lasts only thousandths of a second. Yet each one sends out as much energy as the Sun gives out in a day. Several hundred flashes go off every day, and they have been seen all over the sky. Most lie at huge distances from Earth, in galaxies billions of light years away.

 

In two papers published in parallel this week in the journals Nature and Nature Astronomy, an international team of astronomers present observations that take scientists a step closer to solving the mystery – while also raising new puzzles. The team is led jointly by Franz Kirsten (Chalmers, Sweden, and ASTRON, Netherlands) and Kenzie Nimmo (ASTRON and University of Amsterdam).

 

The scientists set out to make high-precision measurements of a repeating burst source discovered in January 2020 in the constellation of Ursa Major, the Great Bear.

 

“We wanted to look for clues to the bursts’ origins. Using many radio telescopes together, we knew we could pinpoint the source’s location on the sky with extreme precision. That gives the opportunity to see what the local neighbourhood of a fast radio burst looks like”, says Franz Kirsten.

 

To study the source at the highest possible resolution and sensitivity, the scientists combined measurements from telescopes in the European VLBI Network (EVN). By combining data from 12 dish antennas spread across half the globe, Sweden, Latvia, The Netherlands, Russia, Germany, Poland, Italy and China, they were able to find out exactly where on the sky they were coming from.

 

The EVN measurements were complemented with data from several other telescopes, among them the Karl G. Jansky Very Large Array (VLA) in New Mexico, USA.



Close but surprising location


When they analysed their measurements, the astronomers discovered that the repeated radio flashes were coming from somewhere no one had expected.

 

They traced the bursts to the outskirts of the nearby spiral galaxy Messier 81 (M 81), about 12 million light years away. That makes this the closest ever detection of a source of fast radio bursts.

 

There was another surprise in store. The location matched exactly with a dense cluster of very old stars, known as a globular cluster.

 

“It’s amazing to find fast radio bursts from a globular cluster. This is a place in space where you only find old stars. Further out in the universe, fast radio bursts have been found in places where stars are much younger. This had to be something else,” says Kenzie Nimmo.

 

Many fast radio bursts have been found surrounded by young, massive stars, much bigger than the Sun. In those locations, star explosions are common and leave behind highly magnetised remnants.

 

Scientists have come to believe that fast radio bursts can be created in objects known as magnetars. Magnetars are the extremely dense remnants of stars that have exploded. And they are the universe’s most powerful known magnets.

 

“We expect magnetars to be shiny and new, and definitely not surrounded by old stars. So if what we’re looking at here really is a magnetar, then it can’t have been formed from a young star exploding. There has to be another way”, says team member Jason Hessels, University of Amsterdam and ASTRON.

 

The scientists believe that the source of the radio flashes is something that has been predicted, but never seen before: a magnetar that formed when a white dwarf became massive enough to collapse under its own weight.

 

“Strange things happen in the multi-billion-year life of a tight cluster of stars. Here we think we’re seeing a star with an unusual story”, explains Franz Kirsten.

 

Given time, ordinary stars like the Sun grow old and transform into small, dense, bright objects called white dwarfs. Many stars in the cluster live together in binary systems. Of the tens of thousands of stars in the cluster, a few get close enough for one star collects material from the other.

 

That can lead to a scenario known as “accretion-induced collapse”, Kirsten explains.

 

“If one of the white dwarfs can catch enough extra mass from its companion, it can turn into an even denser star, known as a neutron star. That’s a rare occurrence, but in a cluster of ancient stars, it’s the simplest way of making fast radio bursts”, says team member Mohit Bhardwaj, McGill University, Canada.


Fastest ever


Looking for further clues by zooming into their data, the astronomers found another surprise. Some of the flashes were even shorter than they had expected.

 

“The flashes flickered in brightness within as little as a few tens of nanoseconds. That tells us that they must be coming from a tiny volume in space, smaller than a soccer pitch and perhaps only tens of metres across”, says Kenzie Nimmo.

 

Similarly lightning-fast signals have been seen from one of the sky’s most famous objects, the Crab pulsar. It is a tiny, dense, remnant of a supernova explosion that was seen from Earth in 1054 CE in the constellation of Taurus, the Bull. Both magnetars and pulsars are different kinds of neutron stars: super-dense objects with the mass of the Sun in a volume the size of a city, and with strong magnetic fields.

 

“Some of the signals we measured are short and extremely powerful, in just the same way as some signals from the Crab pulsar. That suggests that we are indeed seeing a magnetar, but in a place that magnetars haven’t been found before”, says Kenzie Nimmo.

 

Future observations of this system and others will help to tell whether the source really is an unusual magnetar, or something else, like an unusual pulsar or a black hole and a dense star in a close orbit.

 

“These fast radio bursts seem to be giving us new and unexpected insight into how stars live and die. If that’s true, they could, like supernovae, have things to tell us about stars and their lives across the whole universe,” says Franz Kirsten.



Contacts


Robert Cumming,

communications officer,

Onsala Space Observatory, Chalmers University of Technology, Sweden,

email: robert.cumming@chalmers.se,

tel: +46 70 493 3114 or +46 (0)31 772 5500 


Franz Kirsten,

ASTRON, The Netherlands, and Onsala Space Observatory, Chalmers University of Technology, Sweden,

email: franz.kirsten@chalmers.se,

tel: +46 73 394 0845 or +46 31 772 5522


More about the research and about the European VLBI Network and JIVE


The research was based on observations with the European VLBI Network, the Karl G. Jansky Very Large Array, with additional data from the Hubble, Chandra and Fermi space telescopes, and the Subaru Telescope located in Hawaii.

 

The research is published in two papers in the journals Nature and Nature Astronomy. 

A repeating fast radio burst source in a globular cluster, by Franz Kirsten et al (www.nature.com/articles/s41586-021-04354-w)

Burst timescales and luminosities link young pulsars and fast radio bursts, by Kenzie Nimmo et al (https://arxiv.org/abs/2105.11446).

 

VLBI is an astronomical method by which multiple radio telescopes distributed across great distances observe the same region of sky simultaneously. Data from each telescope is sent to a central "correlator" to produce images with higher resolution than the most powerful optical telescopes.

 

The European VLBI Network (EVN; www.evlbi.org) is an interferometric array of radio telescopes spread throughout Europe, Asia, South Africa and the Americas that conducts unique, high-resolution, radio astronomical observations of cosmic radio sources. Established in 1980, the EVN has grown into the most sensitive VLBI array in the world, including over 20 individual telescopes, among them some of the world's largest and most sensitive radio telescopes. The EVN is composed of 13 Full Member Institutes and 5 Associated Member Institutes.

 

The Joint Institute for VLBI ERIC (JIVE; www.jive.eu) has as its primary mission to operate and develop the EVN data processor, a powerful supercomputer that combines the signals from radio telescopes located across the planet. Founded in 1993, JIVE is since 2015 a European Research Infrastructure Consortium (ERIC) with seven member countries: France, Italy, Latvia, the Netherlands, United Kingdom, Spain and Sweden; additional support is received from partner institutes in China, Germany and South Africa. JIVE is hosted at the offices of the Netherlands Institute for Radio Astronomy (ASTRON) in the Netherlands.


Share on other platforms

Other news

By Rota Rulle November 19, 2025
Ventspils University of Applied Sciences warmly invites doctoral students to take part in our upcoming Language Café – "Science in Plain Language", an event designed to help researchers express complex ideas in clear, accessible, and engaging ways. The event will take place online on Zoom platform, on November 28, 10:00 AM-12:00 PM CET (11:00 AM-1:00 PM Riga time). Work language: English Communicating science effectively is an essential skill in today’s diverse academic and professional environment. During this interactive session, linguist and plain-language expert, VUAS lecturer and guest researcher Aiga Veckalne will introduce the principles of plain language and share practical techniques for presenting research so that it can be understood by wider audiences. After the introduction, participants will be divided into mixed-cultural discussion groups to explore their own research topics and practice communicating them in clear, concise language. The session will conclude with short group presentations summarising the key insights. Doctoral students are encouraged to bring along their morning coffee, relax, and enjoy a welcoming and supportive atmosphere where learning is shared and curiosity is celebrated. We look forward to seeing you at the Language Café and to engaging in meaningful, inspiring conversations about science, clarity, and communication. To register, please fill out the survey here: https://forms.gle/XM9XVLjscCfKBfyD7 Zoom link will be sent to your email after registration.
By Rota Rulle November 8, 2025
Electronics engineering students from Ventspils University of Applied Sciences (VUAS) developed a probe that carried a can of “Rudy’s Kombucha” into near space, reaching an impressive altitude of 28,690 meters – nearly 30 kilometers above the Earth’s surface. While trying to locate the probe afterward, the students encountered major GPS signal disturbances across the Kurzeme region, so they called on radio amateurs for assistance. Working together, they successfully located the probe near Dobele. The space mission probe was equipped with a GoPro camera that captured both the launch and the breathtaking flight. After the controlled explosion of the probe’s balloon at nearly 30 kilometers altitude, a parachute opened, ensuring the can’s safe return to Earth. The probe was launched from Ventspils airfield and, after flying approximately 140 kilometers, landed near Dobele. Jānis Šate, Director of the Electronics Engineering study program at Ventspils University of Applied Sciences, explained: “The company knew that our students develop probes, and they had the idea to attach a beverage can and launch it into space. Technically, it’s more accurate to say it was launched into the stratosphere. We discussed it in August, and within a few months, the electronics engineering students built the probe. It’s a group project in the third year of studies, and this collaboration added extra value. The most challenging part of launching the probe is creating the electronic system attached to the parachute and helium balloon. The balloon rises to about 30 kilometers, where air pressure drops, the balloon bursts, and the probe descends to Earth. Launching it is easy – the hard part is tracking and recovering it afterward. A GPS navigation system is required to continuously transmit the probe’s location. The students’ task was to design an electronic system that can operate in the stratosphere, where temperatures drop to –40°C.” “We coordinated the launch with the Civil Aviation Agency since air traffic is affected, and we also arranged it with Ventspils Airport. Eventually, the probe was found near Dobele, though there were unexpected complications – due to the global situation, GPS communications are regularly disrupted from Königsberg (Kaliningrad, Russia). Unfortunately, we launched on one of those days when signal interference over Kurzeme and the Baltic Sea was particularly strong. That meant that when the probe ascended above ten kilometers, our system showed it was no longer over Kuldīga, but over Kaliningrad. From there, spoofed GPS signals were being transmitted to mislead moving objects.
By Rota Rulle November 4, 2025
In October, VUAS COLOURS WP5, headed by Lasma Asme, joined other representatives from COLOURS partner universities gathered at Garage33, Paderborn University, Germany, for a dynamic CoLab dedicated to Mental Health, Body Image, and Equality, Diversity, and Inclusion (EDI). The three-day event, which is part of the COLOURS CoSpace initiative, brought together students, researchers, and staff from across Europe to exchange perspectives and co-create innovative approaches under the smart specialisation area of Health and Well-being. Participants from a very diverse background, under the moderation of Dr Christine Hante-Koch and Dr Alena Diedrich, discussed how issues like body dissatisfaction, eating disorders, anxiety, and depression are closely connected and how promoting a positive body image can make a real difference for people’s health. Using design thinking processes, the group also worked on the importance of creating fair and inclusive support systems that meet the needs of different communities, including women, LGBTQ+ individuals, and people facing disabilities, financial struggles, or migration challenges. The participants were divided into 4 groups and had cases ranging from how to deal with women who survived breast cancer, to isolated international students living in other countries, and how to make gamers more active while utilizing their special skills and enlarging their comfort zone. At the end of the event, each group pitched their ideas, solutions, and next steps. These solutions were evaluated and challenged by a panel of experts from multiple disciplines, with the example of Martin Persson, Professor of Health Sciences at Kristianstad University. The CoLab encouraged teamwork, creativity, and cultural exchange. The ideas developed in Paderborn will help shape future COLOURS activities and strengthen collaboration between partner universities committed to building healthier and more inclusive learning environments and society at large.
By Rota Rulle October 29, 2025
Ventspils University of Applied Sciences (VUAS) has been recognized as one of 16 higher education institutions in Latvia to receive the “Best Practice University” award from the Study in Latvia initiative. This certificate confirms that the university meets the criteria set by the Ministry of Education and Science, the Ministry of Foreign Affairs, and the Ministry of the Interior, ensuring responsible admission of international students and a high-quality study process. With this Agreement, the VUAS have undertaken to comply with the criteria and principles of the Agreement fostering good practice in attracting international students and ensuring the delivery of a high-quality study process. VUAS promises to observe good faith and ethical principles, providing only true information in marketing activities and advertising campaigns for international students.
By Rota Rulle October 28, 2025
On October 22, Ventspils University of Applied Sciences (VUAS) joined the international celebration of “Erasmus Days”, bringing students and staff together for an afternoon filled with creativity, teamwork, and cultural exchange. The event was organized by two students of VUAS with the help of international office and “COLOURS”, featuring engaging activities and friendly competition across a series of interactive stations. Each station offered a unique challenge inspired by the theme of cultural diversity, encouraging participants to test their knowledge, communication skills, and creativity while earning points for their teams. Guided by enthusiastic station leaders and coordinated by the two main event organizers, the atmosphere was both energetic and welcoming. Students from different study programs and cultural backgrounds had the opportunity to connect, work together, and learn from one another in a relaxed and engaging environment. Throughout the event, participants enjoyed refreshments and snacks, as well as a live performance from the band “Sweet Sixteen.” The music, laughter, and friendly competition made for a memorable afternoon celebrating the spirit of “Erasmus +” openness, inclusion, and intercultural understanding. At the end of the activities, all teams received prizes in recognition of their efforts, with the winning team taking home exclusive VUAS merchandise. “Erasmus Days” once again highlighted the value of collaboration and student mobility, reminding everyone that learning extends far beyond the classroom, it thrives through shared experiences and cultural exchange and making new connections. Photos: Endijs Eihlers
By Rota Rulle October 24, 2025
After a fantastic first edition, our Language Café is back and better than ever! If you missed it the first time, this is your chance to join the friendliest crew of language lovers on the Ventspils University of Applied Sciences campus. Expect good vibes, new words, and plenty of laughter as we meet again at D0 (Lounge Room) on 29th October 2025 at 16:30. Whether you’re a returning participant or a first-timer, everyone is welcome! So dust off your sense of humour, clear your schedule, and widen your comfort zone. Bring a friend, roommate, coursemate, and of course, your favourite snack – and let’s make language learning fun again!
Other news