Cosmic flashes pinpointed to a surprising location in space

February 23, 2022

Astronomers have been surprised by the closest source of mysterious flashes in the sky called fast radio bursts. Precision measurements with radio telescopes reveal that the bursts are made among old stars, and in a way that no one was expecting. The source of the flashes, in nearby spiral galaxy M 81, is the closest of its kind to Earth.


Fast radio bursts are unpredictable, extremely short flashes of light from space. Astronomers have struggled to understand them ever since they were first discovered in 2007. So far, they have only ever been seen by radio telescopes.

 

Each flash lasts only thousandths of a second. Yet each one sends out as much energy as the Sun gives out in a day. Several hundred flashes go off every day, and they have been seen all over the sky. Most lie at huge distances from Earth, in galaxies billions of light years away.

 

In two papers published in parallel this week in the journals Nature and Nature Astronomy, an international team of astronomers present observations that take scientists a step closer to solving the mystery – while also raising new puzzles. The team is led jointly by Franz Kirsten (Chalmers, Sweden, and ASTRON, Netherlands) and Kenzie Nimmo (ASTRON and University of Amsterdam).

 

The scientists set out to make high-precision measurements of a repeating burst source discovered in January 2020 in the constellation of Ursa Major, the Great Bear.

 

“We wanted to look for clues to the bursts’ origins. Using many radio telescopes together, we knew we could pinpoint the source’s location on the sky with extreme precision. That gives the opportunity to see what the local neighbourhood of a fast radio burst looks like”, says Franz Kirsten.

 

To study the source at the highest possible resolution and sensitivity, the scientists combined measurements from telescopes in the European VLBI Network (EVN). By combining data from 12 dish antennas spread across half the globe, Sweden, Latvia, The Netherlands, Russia, Germany, Poland, Italy and China, they were able to find out exactly where on the sky they were coming from.

 

The EVN measurements were complemented with data from several other telescopes, among them the Karl G. Jansky Very Large Array (VLA) in New Mexico, USA.



Close but surprising location


When they analysed their measurements, the astronomers discovered that the repeated radio flashes were coming from somewhere no one had expected.

 

They traced the bursts to the outskirts of the nearby spiral galaxy Messier 81 (M 81), about 12 million light years away. That makes this the closest ever detection of a source of fast radio bursts.

 

There was another surprise in store. The location matched exactly with a dense cluster of very old stars, known as a globular cluster.

 

“It’s amazing to find fast radio bursts from a globular cluster. This is a place in space where you only find old stars. Further out in the universe, fast radio bursts have been found in places where stars are much younger. This had to be something else,” says Kenzie Nimmo.

 

Many fast radio bursts have been found surrounded by young, massive stars, much bigger than the Sun. In those locations, star explosions are common and leave behind highly magnetised remnants.

 

Scientists have come to believe that fast radio bursts can be created in objects known as magnetars. Magnetars are the extremely dense remnants of stars that have exploded. And they are the universe’s most powerful known magnets.

 

“We expect magnetars to be shiny and new, and definitely not surrounded by old stars. So if what we’re looking at here really is a magnetar, then it can’t have been formed from a young star exploding. There has to be another way”, says team member Jason Hessels, University of Amsterdam and ASTRON.

 

The scientists believe that the source of the radio flashes is something that has been predicted, but never seen before: a magnetar that formed when a white dwarf became massive enough to collapse under its own weight.

 

“Strange things happen in the multi-billion-year life of a tight cluster of stars. Here we think we’re seeing a star with an unusual story”, explains Franz Kirsten.

 

Given time, ordinary stars like the Sun grow old and transform into small, dense, bright objects called white dwarfs. Many stars in the cluster live together in binary systems. Of the tens of thousands of stars in the cluster, a few get close enough for one star collects material from the other.

 

That can lead to a scenario known as “accretion-induced collapse”, Kirsten explains.

 

“If one of the white dwarfs can catch enough extra mass from its companion, it can turn into an even denser star, known as a neutron star. That’s a rare occurrence, but in a cluster of ancient stars, it’s the simplest way of making fast radio bursts”, says team member Mohit Bhardwaj, McGill University, Canada.


Fastest ever


Looking for further clues by zooming into their data, the astronomers found another surprise. Some of the flashes were even shorter than they had expected.

 

“The flashes flickered in brightness within as little as a few tens of nanoseconds. That tells us that they must be coming from a tiny volume in space, smaller than a soccer pitch and perhaps only tens of metres across”, says Kenzie Nimmo.

 

Similarly lightning-fast signals have been seen from one of the sky’s most famous objects, the Crab pulsar. It is a tiny, dense, remnant of a supernova explosion that was seen from Earth in 1054 CE in the constellation of Taurus, the Bull. Both magnetars and pulsars are different kinds of neutron stars: super-dense objects with the mass of the Sun in a volume the size of a city, and with strong magnetic fields.

 

“Some of the signals we measured are short and extremely powerful, in just the same way as some signals from the Crab pulsar. That suggests that we are indeed seeing a magnetar, but in a place that magnetars haven’t been found before”, says Kenzie Nimmo.

 

Future observations of this system and others will help to tell whether the source really is an unusual magnetar, or something else, like an unusual pulsar or a black hole and a dense star in a close orbit.

 

“These fast radio bursts seem to be giving us new and unexpected insight into how stars live and die. If that’s true, they could, like supernovae, have things to tell us about stars and their lives across the whole universe,” says Franz Kirsten.



Contacts


Robert Cumming,

communications officer,

Onsala Space Observatory, Chalmers University of Technology, Sweden,

email: robert.cumming@chalmers.se,

tel: +46 70 493 3114 or +46 (0)31 772 5500 


Franz Kirsten,

ASTRON, The Netherlands, and Onsala Space Observatory, Chalmers University of Technology, Sweden,

email: franz.kirsten@chalmers.se,

tel: +46 73 394 0845 or +46 31 772 5522


More about the research and about the European VLBI Network and JIVE


The research was based on observations with the European VLBI Network, the Karl G. Jansky Very Large Array, with additional data from the Hubble, Chandra and Fermi space telescopes, and the Subaru Telescope located in Hawaii.

 

The research is published in two papers in the journals Nature and Nature Astronomy. 

A repeating fast radio burst source in a globular cluster, by Franz Kirsten et al (www.nature.com/articles/s41586-021-04354-w)

Burst timescales and luminosities link young pulsars and fast radio bursts, by Kenzie Nimmo et al (https://arxiv.org/abs/2105.11446).

 

VLBI is an astronomical method by which multiple radio telescopes distributed across great distances observe the same region of sky simultaneously. Data from each telescope is sent to a central "correlator" to produce images with higher resolution than the most powerful optical telescopes.

 

The European VLBI Network (EVN; www.evlbi.org) is an interferometric array of radio telescopes spread throughout Europe, Asia, South Africa and the Americas that conducts unique, high-resolution, radio astronomical observations of cosmic radio sources. Established in 1980, the EVN has grown into the most sensitive VLBI array in the world, including over 20 individual telescopes, among them some of the world's largest and most sensitive radio telescopes. The EVN is composed of 13 Full Member Institutes and 5 Associated Member Institutes.

 

The Joint Institute for VLBI ERIC (JIVE; www.jive.eu) has as its primary mission to operate and develop the EVN data processor, a powerful supercomputer that combines the signals from radio telescopes located across the planet. Founded in 1993, JIVE is since 2015 a European Research Infrastructure Consortium (ERIC) with seven member countries: France, Italy, Latvia, the Netherlands, United Kingdom, Spain and Sweden; additional support is received from partner institutes in China, Germany and South Africa. JIVE is hosted at the offices of the Netherlands Institute for Radio Astronomy (ASTRON) in the Netherlands.


Share on other platforms

Other news

By Rota Rulle September 9, 2025
On September 1 of this year, Ventspils University of Applied Sciences launched a new European Union (EU) co-funded project “Modernization of the Study Environment of Ventspils University of Applied Sciences”, No. 4.2.1.8/2/25/I/007. The project implementation period is 24 months, until August 31, 2027. The project aims to ensure the modernization of the study environment of Ventspils University of Applied Sciences, which includes the improvement and development of the infrastructure of the bachelor's study program "Computer Science" and the professional bachelor's study program "Electronics Engineering". To ensure high-quality and competitive education, targeted measures will be implemented within the project framework, focusing on the technological modernization of study spaces, enhancing the material and technical base, and introducing information and communication technologies (ICT). These engineering and IT programs are strategically important for the sustainable economic growth of the Ventspils region and the entire country of Latvia, preparing highly qualified specialists to promote digital transformation and technological development. During the project, the infrastructure of laboratories and classrooms will be enhanced to ensure that study rooms are equipped with the latest technologies and meet the standards of modern higher education. The latest technologies and equipment will be purchased and introduced, significantly expanding students' opportunities to work with current industry tools and software, thereby preparing them to work with technologies widely used in the industry. In addition, it is planned to continue adapting the digital infrastructure to modern requirements, allowing for the implementation of the hybrid and distance learning process in accordance with current educational trends. The modernization carried out will significantly improve the quality of studies and compliance with labour market requirements, providing students with the opportunity to acquire practical skills and adapt to the growing requirements of the industry. This project will not only improve the study environment and promote the integration of innovations into the learning process, but will also contribute to the development of Ventspils University of Applied Sciences as a higher education and research center in Latvia and beyond, attracting students from the region and the country, as well as from abroad. The total cost of the project “Modernization of the study environment of Ventspils University of Applied Sciences”, No. 4.2.1.8/2/25/I/007, is 215,083.00 EUR, of which the planned amount of the European Regional Development Fund is 85% of the eligible expenses – 182,820.55 EUR, and the amount of state funding is 15% of the eligible costs – 32,262.45 EUR.
By Martina Bertāne September 3, 2025
We are pleased to invite you to participate in the VIRAC Summer School on Pulsar Observations at Centimetre and Metre Wavelengths: Ventspils, Latvia |September 8–19, 2025 This intensive and inspiring summer school is designed for Master’s students, PhD candidates, and early-career researchers in astronomy and astrophysics. The event is hosted by Ventspils University of Applied Sciences. Key Topics: Pulsar observations with the LOFAR telescope Pulsar astronomy fundamentals Observation planning Pulsar data processing and analysis Venue: Engineering Research Institute – Ventspils International Radio Astronomy Centre, Ventspils University of Applied Sciences, Room 407
By Rota Rulle August 25, 2025
The Latvian Rural Advisory and Education Centre, in cooperation with project partners, one of which is Ventspils University of Applied Sciences, invites you to an online opening seminar on August 27 at 10:00 AM on the new My Farm livestock section, which helps to: accumulate and analyze farm data, monitor animal welfare, plan work and make data-driven decisions, save time in preparing reports. At the seminar: You will learn how this idea originated and why it remains relevant today. You will hear about the experiences and benefits of experts for Latvian livestock farmers. You will see a practical demonstration of how to use the tool on your farm. You will receive answers to your important questions. Questions can be asked in the comments during the live broadcast. Live on Facebook profiles @LLKCOzolnieki and @Manslauks, as well as www.llkc.lv Link to the event: Facebook: https://www.facebook.com/events/1290216356070792 The event is a part of the project No.: 21-00-A01611-000017 "Efficient Environmental and Animal Welfare Farm Monitoring". Project Objective: The long-term goal is to promote sustainability and competitiveness in the Latvian livestock sector, in line with the guidelines of the European Green Deal. In recent years, global environmental and climate issues have become increasingly relevant, and it can be assumed that in the future, consumers will demand products produced in an environmentally friendly manner. These future challenges compel farmers to reassess their current management practices and explore environmental and sustainability issues. To achieve this goal, an innovative farm monitoring system will be developed for the livestock sector, ensuring comprehensive data collection and analysis in one place. This system will promote compliance with animal welfare requirements, facilitate sustainable and environmentally friendly farming practices, and enable the monitoring of daily activities, ultimately reducing the time spent on preparing various reports.
By Rota Rulle August 19, 2025
The European Space Agency (ESA) has opened online registration for the international conference on big data from space, Big Data from Space 2025 (BiDS 2025). This large-scale event will take place for the first time in the Baltic Sea region, in Riga, from 29 September to 3 October. The conference will offer a broad and diverse programme, bringing together leading experts, researchers, and policymakers to discuss the use of satellite data in science, innovation, and the development of solutions that matter to society. Jānis Paiders , Acting State Secretary of the Ministry of Education and Science of Latvia and Deputy State Secretary for Human Capital, Science, and Innovation Policy, highlights: “The fact that the international BiDS 2025 conference is taking place in Latvia marks a significant milestone – this prestigious event is being held in the Baltic Sea region for the first time. It is a testament to Latvia’s vital role in the development of the space sector, as well as the potential of our researchers and companies to apply satellite data for economic growth, societal needs, and the creation of innovative technologies. ” BiDS 2025 programme will include: Workshops at the University of Latvia Academic Centre (29 - 30 September); Panel discussions, presentations, and an exhibition at the National Library of Latvia (1 - 3 October); B2B events, demonstrations, and broad networking opportunities.
By Rota Rulle August 11, 2025
Ventspils University of Applied Sciences Faculty of Translation Studies Bachelor’s degree student of “Translation and Language Technology” Matīss Jansons and Bachelor’s degree student of “Intercultural Communication” Līva Slesare participated in an exciting summer school “Responsible Digitalization: AI, Social Media and their Contribution to a Sustainable Society”, which took place from 21st to 25th of July in Paderborn, Germany. The aim of the summer school was to provide a learning experience about sustainable use of artificial intelligence and digital technologies for the benefit of society, while promoting collaboration, practical innovation and cultural exchange. The summer school program was intense and dynamic – lectures, workshops and discussions led by lecturers and guest lecturers took place throughout the day, covering the practical application of artificial intelligence, its ethical and social aspects, issues of power, prejudice and everyday life. Each day provided new insights and encouraged students to think about the role of technology in the future society. Outside of lectures, students from Latvia, as well as from various other countries, had the opportunity to go on guided tours and get to know the city of Paderborn in Germany and its ancient history, see the world's largest computer museum "Heinz Nixdorf MuseumsForum", as well as have informal conversations and make new contacts. Students admit that the opportunity to work in international teams with participants from several COLOURS alliance universities was very valuable. This diversity promoted the exchange of experience and allowed for different approaches to solving problems related to artificial intelligence. Dr. François Vignale's (Le Mans University) lecture on the identification of AI-generated and biased content also aroused special interest, providing practical knowledge and sparking a discussion about these problems in society. This experience gives students the opportunity to gain new knowledge, opening a broader view of the everyday life of students at other European universities, exchanging opinions and creating contacts and future friendships. Read more about the summer school on the COLOURS website: https://colours-alliance.eu/event/international-summer-school-on-responsible-digitalization-ai-social-media-and-their-contribution-to-a-sustainable-society/
By Rota Rulle July 30, 2025
Today, the field of radio astronomy has experienced a resurgence in ‘transient’ science, with more and more astronomical phenomena found to be active on timescales of months, weeks, and even within a single day. For example, high-mass stars form in short, intense bursts of mass accretion that display active variations on day-long timescales. The use of single-baseline interferometers (two telescopes connected together) has been known in astronomy since the 1940s. However, demand for this observing technique was soon overtaken by the development of interferometers comprising large numbers of radio telescope dishes. As demand for aperture synthesis arrays increased, the time available for each observing programme became more limited. The recent emphasis on transient science has renewed the demand for facilities capable of high-cadence monitoring of brightness variations in radio emission—an area in which the now uncommon single-baseline radio interferometer is particularly well suited. The aim of this project is the development of the Irbene Single-Baseline Interferometer (ISBI), designed to detect variations in the radio emission associated with high-mass star-forming regions. The ISBI will be used to monitor both radio continuum and maser emission from high-mass protostars. This will enable clearer distinctions to be drawn between currently untested and competing theoretical models proposed to explain the enigmatic variability recently linked to the formation of high-mass stars. With recent discoveries confirming rapid accretion bursts in high-mass protostars, time-domain radio astronomy has become a key frontier in understanding the formation of massive stars. These short-lived accretion episodes give rise to measurable variations in both radio continuum and maser emission. However, existing large-scale arrays are often oversubscribed and are not optimised for long-term, targeted monitoring of such sources. “The method will enable clearer distinctions to be drawn between currently untested and competing theoretical models proposed to explain the enigmatic variability recently linked to the formation of high-mass stars.” High-cadence, long-term monitoring, such as that possible by ISBI, greatly benefits from automation, which makes it much easier to carry out long-term, frequent monitoring of space signals, from planning observations to processing the data. Latvian scientists have created a unique set of tools and automated systems for the ISBI, turning it into a one-of-a-kind instrument with capabilities not found anywhere else. ISBI stands out because, unlike single-dish telescopes or large VLBI arrays, it can both detect weak signals and track them regularly over time. This makes it ideal for studying the changing radio emissions of massive star-forming regions, helping researchers understand processes like matter falling onto stars and the jets they eject. Thanks to automation, almost the whole workflow runs smoothly, allowing continuous and efficient monitoring of these fascinating cosmic events.
Other news