Radio Astronomy driving new competences and innovation on the European scale

July 16, 2019

LOFAR (Low Frequency Array) is the world’s largest and most sensitive low frequency radio telescope. It was designed, built, and is now operated by ASTRON, the Netherlands Institute for Radio Astronomy. LOFAR’s reach now spans Europe – from Ireland to Poland, with the newest LOFAR antenna station being delivered to Ventspils University of Applied Sciences in Latvia.


It might be surprising that a niche discipline such as Radio Astronomy is a driver for new competences and innovation on the European scale. Moreover, this discipline sets a template for future fundamental science to help structure ‘perfecting the European endeavour’ as Dutch Prime Minister Rutte put it so eloquently in June 2018.


Here we propose that LOFAR is a prime example of how state-of-the-art facilities leads to the sharing and building of competencies: it is one of today’s major success stories of research infrastructures on a European scale.


ASTRON is a world-leading institute in the development, exploitation, and scientific use of radio telescopes. Building world-leading radio telescope instrumentation is rarely a task that one institute or even one country can achieve. It requires collaboration, enduring relationships and knowledge exchange: moreover, as it is fundamental science with expensive facilities, it must deliver benefits for all parties involved.



The International LOFAR Telescope (ILT) is a foundation under Dutch law. The members of the ILT are the eight institutes and countries who currently own LOFAR stations. The mission of the ILT is to exploit the LOFAR telescope under common policies to maximise its science output. Access to LOFAR observing is open to all scientists from around the world following a competitive peer-reviewed process termed ‘open skies’ in the astronomy discipline.

 

Largest radio telescope

LOFAR, now connecting fifty-two antenna stations in eight European countries to powerful computers in Groningen, the Netherlands, forms the largest radio telescope and operates at the lowest radio frequencies that can be observed from Earth. Unlike classical dish telescopes, LOFAR is a multipurpose sensor network, with an innovative computer and network infrastructure that can handle extremely large data volumes. Its long-term archive currently contains over 40 petabytes of astronomical data.

The core of LOFAR consists of a network of twenty-four stations concentrated in a three kilometre area the north-east of the Netherlands; there are a further fourteen stations also in the Netherlands. The network has grown over the years, making LOFAR a truly pan-European research infrastructure with six stations in Germany, three in Poland, and one each in France, Ireland, Sweden, the United Kingdom, and the next one being delivered to Latvia in summer 2019. The greatest distance between stations is termed the ‘baseline’ and now approaches 2000 km. This baseline sets the resolution, or detailed zoom-in ability, of the LOFAR telescope. The total number of stations determines its sensitivity to the weakest radio emission from the sky. All this is done in the highly-populated European continent: it is a testament to the brains behind the continuously-improving signal processing algorithms that this is achievable.

Last week, the equipment for the new station was shipped to Latvia, which will enhance the resolution, sensitivity, and fidelity of LOFAR.

 

Twinning

Being part of the LOFAR family brings multiple benefits to the research community in the member countries. A recently completed H2020 project, BALTICS (Building on Advanced LOFAR Technology for Innovation, Collaboration, and Sustainability), ran between January 2016 and December 2018. The partners – VIRAC (Ventspils International Radio Astronomy Center), ASTRON, and UMAN (University of Manchester) – strengthened the expertise and experience of VIRAC radio astronomers and technology and instrumentation engineers. The project encompassed development and training in instrumentation and data analysis, accompanied by dissemination and scientific publications.

BALTICS was a great stepping stone on the way to financing, realisation, and future exploitation of the LOFAR station under construction in Latvia. VIRAC views the LOFAR station as the natural extension of their Irbene Observatory. It will further anchor the role of VIRAC as a top-level science and technology expertise centre in the northeast of Europe.

 

Networking

BALTICS was specifically designed to cement the networking collaborations between ASTRON, UMAN, and VIRAC. This will facilitate subsequent participation in future joint endeavours, including top-notch instrumental and astronomical research and development projects, e.g. regarding the Square Kilometre Array (SKA), often on the interface between academia and industry, in high-impact regional, national and European research areas.

The project successfully concluded its activities with a scientific conference organised in Jurmala, Latvia on 5 December 2018. Attendees from Latvia, the Netherlands and the United Kingdom, as well as Bulgaria, France, Germany, Poland, Russia, and Ukraine, shared and discussed the knowledge and experience gained during the project.

The conference was followed by a Workshop at the Irbene Observatory of VIRAC on 6 December 2018, with the goal of promoting the opportunities that the participation of VIRAC in LOFAR and the EVN (European VLBI Network) will bring to the new user community, and to intensify links with partner scientific and technological institutes in the wider European region. The workshop covered topics from the basics of ILT science operations, organization and future upgrade, to science research topics from potential users.

 

Next steps

In the closing report to the European Commission, VIRAC expressed its pleasure and gratitude with the results they derived from the BALTICS project. The ASTRON participants were delighted to be able to contribute to increasing their capabilities, and were impressed by the work of all contributors in their research in Low Frequency Radio astronomy and the related technical facilities. All participants in the closing meeting of BALTICS were excited to see the ground preparations for the LOFAR station. The ILT looks forward to welcoming the Latvian consortium as a full member.

The ILT is now engaged in a major technological upgrade, again led by ASTRON, that will position the facility as a cutting-edge research infrastructure throughout the 2020’s, and for technological pathfinding aimed at the decade beyond. Meanwhile, the ILT aims to welcome new partner countries and institutes to further enhance the facility, as well as to strengthen its support base and user community.

By Dr. René Vermeulen, Director of the International LOFAR Telescope, and Prof. Carole Jackson, Scientific and General Director of ASTRON

Source: EuroScientist



Share on other platforms

Other news

By Rota Rulle September 29, 2025
If you want to feel at home faster in our city of Ventspils and like to build your confidence in everyday conversations, and looking to make friends and integrate into the Latvian community, then join the first Language Café meeting – organized by COLOURS WP5 (EDI)! It’s a relaxed and welcoming meet-up where international and local students come together to: Practice different languages Make new friends Enjoy light snacks and friendly conversations No grammar tests, no pressure – just real conversations in small, friendly groups. Come as you are and enjoy the exchange of cultures and languages! Register HERE Tuesday, 30th September at D0, 16.30!
By Rota Rulle September 26, 2025
Approximately 700 million Europeans are constantly encouraged throughout their lives to learn as many languages as possible – whether in educational institutions, through self-study, for professional purposes, or out of personal interest. The Council of Europe states that multilingualism is a means to foster better intercultural understanding and is a key component of our continent’s cultural heritage. Representatives from the language centres of the COLOURS European Universities Alliance* joined forces in a collaborative project, creating a video greeting in honour of the European Day of Languages, celebrated annually on September 26. Ventspils University of Applied Sciences is represented in this team by Rūta Maltisova, lecturer at the Faculty of Translation Studies, who also took part in the creation of the video greeting. Rūta is currently working together with colleagues from all COLOURS partner universities on a virtual language and culture guide – a glossary and language learning materials – which are planned to be developed and made available to all partner universities by the European Day of Languages in 2026. This initiative aims to support students and lecturers in learning and teaching nine European languages and cultures: Swedish, Spanish, French, Italian, German, Latvian, Polish, Croatian, and Macedonian. At the end of the video, greetings can be heard in each of the COLOURS alliance member languages, all translating into English as “Happy European Day of Languages!” or in Latvian, “Priecīgu Eiropas valodu dienu!” On the European Day of Languages, Rūta Maltisova encourages everyone to remember that languages are like bridges connecting different cultures. Without them, we would only be able to observe each other from a safe distance, separated by a potential barrier of prejudice that prevents us from understanding the essence and values of another culture. By learning a language, we also learn about the culture – and, in doing so, we learn about one another. Thanks to the COLOURS Universities Alliance, we learn something new every day about each other’s cultures, values, and, undoubtedly, languages. *Le Mans University (France), University of Castilla-La Mancha (Spain), University of Ferrara (Italy), Paderborn University (Germany), Jan Dlugosz University (Poland), Josip Juraj Strossmayer University of Osijek (Croatia), University St Kliment Ohridski Bitola (North Macedonia), Kristianstad University (Sweden), and Ventspils University of Applied Sciences (Latvia).
By Rota Rulle September 25, 2025
On 24 September 2025, a delegation from the University of Latvia Faculty of Science and Technology (UL FST) visited Ventspils University of Applied Sciences (VUAS). The UL delegation included FST Dean Aigars Ekers, Acting Vice-Dean for Science Sandris Lācis, Vice-Dean for Studies Aiga Švede, Vice-Dean for Development Diāna Šmite, and Head of the Department of Physics Tija Sīle. VUAS and the Ventspils International Radio Astronomy Centre (VIRAC) were represented by Rector Andris Vaivads, Dean of the Faculty of Information Technology Vairis Caune, Head of the Doctoral School Lilita Sproģe, Chairman of the VUAS Senate and, at the same time, Chairman of the VIRAC Scientific Council Juris Freimanis, along with other researchers and teaching staff. The visit began with a trip to the VIRAC radio telescope complex in Irbene, where senior researcher Artis Aberfelds introduced the guests to the telescopes, associated equipment, and laboratories, and their use in astronomical observations. After a joint lunch at VUAS café Panorāma, Jānis Šate showed the guests the university's electronics teaching laboratories and their equipment. The event reached a productive apogee in a joint discussion lasting around two hours in the VUAS Rectorate conference hall. At its opening, Rector Andris Vaivads gave a presentation about VUAS, followed by a presentation by, Juris Kalvāns, Head of the VIRAC Astronomy and Astrophysics Department, about the main research directions in VIRAC astronomy, while researcher Vladislavs Bezrukovs outlined VIRAC's extensive international cooperation, particularly its participation in European Research Infrastructure Consortia (ERIC). “The event reached a productive apogee in a joint discussion lasting around two hours in the VUAS Rectorate conference hall, where Rector Andris Vaivads gave a presentation about VUAS.” The discussion covered a range of topics related to science and studies. Both sides expressed interest in officially involving VUAS in the UL Master’s programme in Physics, alongside Daugavpils University. VIRAC researchers already teach several astronomy courses within this programme. The potential involvement of the VIRAC high-performance computing cluster in a new computing consortium, where UL is expected to take the leading role, was also discussed. Looking further ahead, UL is also interested in gaining access to VIRAC satellite communication abilities. Finally, the UL–VUAS cooperation agreement is to be renewed, including matters of collaboration in doctoral studies and research, as well as Latvia’s participation in the International Astronomical Union. The meeting took place in a frendly atmosphere, giving confidence in the successful continuation of cooperation between UL and VUAS.
By Rota Rulle September 9, 2025
On September 1 of this year, Ventspils University of Applied Sciences launched a new European Union (EU) co-funded project “Modernization of the Study Environment of Ventspils University of Applied Sciences”, No. 4.2.1.8/2/25/I/007. The project implementation period is 24 months, until August 31, 2027. The project aims to ensure the modernization of the study environment of Ventspils University of Applied Sciences, which includes the improvement and development of the infrastructure of the bachelor's study program "Computer Science" and the professional bachelor's study program "Electronics Engineering". To ensure high-quality and competitive education, targeted measures will be implemented within the project framework, focusing on the technological modernization of study spaces, enhancing the material and technical base, and introducing information and communication technologies (ICT). These engineering and IT programs are strategically important for the sustainable economic growth of the Ventspils region and the entire country of Latvia, preparing highly qualified specialists to promote digital transformation and technological development. During the project, the infrastructure of laboratories and classrooms will be enhanced to ensure that study rooms are equipped with the latest technologies and meet the standards of modern higher education. The latest technologies and equipment will be purchased and introduced, significantly expanding students' opportunities to work with current industry tools and software, thereby preparing them to work with technologies widely used in the industry. In addition, it is planned to continue adapting the digital infrastructure to modern requirements, allowing for the implementation of the hybrid and distance learning process in accordance with current educational trends. The modernization carried out will significantly improve the quality of studies and compliance with labour market requirements, providing students with the opportunity to acquire practical skills and adapt to the growing requirements of the industry. This project will not only improve the study environment and promote the integration of innovations into the learning process, but will also contribute to the development of Ventspils University of Applied Sciences as a higher education and research center in Latvia and beyond, attracting students from the region and the country, as well as from abroad. The total cost of the project “Modernization of the study environment of Ventspils University of Applied Sciences”, No. 4.2.1.8/2/25/I/007, is 215,083.00 EUR, of which the planned amount of the European Regional Development Fund is 85% of the eligible expenses – 182,820.55 EUR, and the amount of state funding is 15% of the eligible costs – 32,262.45 EUR.
By Martina Bertāne September 3, 2025
We are pleased to invite you to participate in the VIRAC Summer School on Pulsar Observations at Centimetre and Metre Wavelengths: Ventspils, Latvia |September 8–19, 2025 This intensive and inspiring summer school is designed for Master’s students, PhD candidates, and early-career researchers in astronomy and astrophysics. The event is hosted by Ventspils University of Applied Sciences. Key Topics: Pulsar observations with the LOFAR telescope Pulsar astronomy fundamentals Observation planning Pulsar data processing and analysis Venue: Engineering Research Institute – Ventspils International Radio Astronomy Centre, Ventspils University of Applied Sciences, Room 407
By Rota Rulle August 25, 2025
The Latvian Rural Advisory and Education Centre, in cooperation with project partners, one of which is Ventspils University of Applied Sciences, invites you to an online opening seminar on August 27 at 10:00 AM on the new My Farm livestock section, which helps to: accumulate and analyze farm data, monitor animal welfare, plan work and make data-driven decisions, save time in preparing reports. At the seminar: You will learn how this idea originated and why it remains relevant today. You will hear about the experiences and benefits of experts for Latvian livestock farmers. You will see a practical demonstration of how to use the tool on your farm. You will receive answers to your important questions. Questions can be asked in the comments during the live broadcast. Live on Facebook profiles @LLKCOzolnieki and @Manslauks, as well as www.llkc.lv Link to the event: Facebook: https://www.facebook.com/events/1290216356070792 The event is a part of the project No.: 21-00-A01611-000017 "Efficient Environmental and Animal Welfare Farm Monitoring". Project Objective: The long-term goal is to promote sustainability and competitiveness in the Latvian livestock sector, in line with the guidelines of the European Green Deal. In recent years, global environmental and climate issues have become increasingly relevant, and it can be assumed that in the future, consumers will demand products produced in an environmentally friendly manner. These future challenges compel farmers to reassess their current management practices and explore environmental and sustainability issues. To achieve this goal, an innovative farm monitoring system will be developed for the livestock sector, ensuring comprehensive data collection and analysis in one place. This system will promote compliance with animal welfare requirements, facilitate sustainable and environmentally friendly farming practices, and enable the monitoring of daily activities, ultimately reducing the time spent on preparing various reports.
Other news