Analysis of electromagnetic interference impact on radio astronomical observations

February 23, 2025

Radio astronomy is a fundamental science, which studies the near and far universe. Many cosmic phenomena produce electromagnetic radiation that can only be detected by large radio antennas, even though huge amounts of energy are sometimes emitted, due to strong attenuation of signals caused by immense distances to the astronomical objects. Therefore, the received power of signals emitted by cosmological objects is often many orders of magnitude weaker than that of artificial sources in the environment of a telescope. One illustrative example was the detection of the MASER emission from a cloud of water vapour at 11 109 lyr = 1023 km distance from Earth. To receive the signal with strength of about 2 mJy = -287 dB[Wm-2 Hz-1] it required 14 hours of observation of the source MGJ0414+0543 with a 100-m radio telescope.


Radio astronomical observatories utilize large aperture radio telescopes like RT-16 and RT-32 very often equipped with cryogenically cooled low-noise amplifiers or arrays with sometimes hundreds or thousands of smaller antennas like LOFAR-LATVIA HBA and LBA antenna fields. In combination with ultra-stable electronics, which allows to integrate the incoming signal for several hours in order to decrease the effective noise level, this leads to the enormous sensitivities necessary for detecting weak signals from the universe. Furthermore, a large variety of radio frequency interference (RFI) detection and mitigation techniques have been developed in the past two decades, from hardware-based solutions (e.g. superconducting filters) to real-time digital processing and convolutional neural networks.



Yet, even today the most effective interference mitigation is to ensure that harmful artificial signals are prevented from entering the telescope system in the first place. This is the aim of spectrum management for radio astronomy.

 

The International Telecommunication Union (ITU), in particular its radio-communication sector (ITU-R), acknowledged the importance of the radio astronomy service (RAS) already many decades ago in 1959 (Committee on Radio Astronomy Frequencies 2005). Protection criteria has been formulated to ensure that some of the frequency bands that are of highest importance to radio astronomy are kept free from RFI. As an example, one of the most important spectral lines for radio astronomy is the 21-cm transition of neutral atomic hydrogen (Hi) having a rest frequency of 1420.4 MHz. To guarantee interference-free measurements of Hi, no man-made emission is permitted in the frequency range between 1400 and 1427 MHz. This and other rules are part of the radio regulations by the ITU-R. Furthermore, a methodology to calculate limits on received interference is described in the recommendation ITU-R Rec. RA.769, 2003a, which is intended to guarantee a certain minimum quality of the recorded data for astronomers. The governments and administrations of all nations that are represented in the ITU-R have agreed to implement the rules and procedures decided by ITU-R bodies into their national law.


Emissions from Wind Turbines.


Harvesting wind energy is one of the few sustainable ways to generate energy with a low CO2 footprint. Considering the challenges and threats imposed by global climate change, all efforts to utilize renewable energy sources deserve our support.


Wind turbines (WT), as all other industrial devices in the vicinity of a radio telescope, have a potential of interference for astronomical observations. Therefore, coordination is needed to guarantee a beneficial coexistence between radio astronomy and societies interest in wind power utilization.



Figure 2. Radio Interference scenario between antenna and wind turbine. 


In terms of electromagnetic interference (EMI) regulations, wind turbines count as industrial devices (Group 1, Class A), which are required to conform to the EN550011 (also known as CISPR-11) standard [4]: the electrical field strength measured at a distance of 30 m with a quasi-peak (QP) detector having a bandwidth of 120 kHz must not exceed 30 dBµV/m below 230 MHz or 37 dBµV/m between 230 MHz and 1 GHz. (Here we are using the CISPR-11 specification for the appropriate bands C and D, 30 MHz−1000 MHz.)


In addition to their main power generators and conversion equipment the wind power generators may also use computerised and networked control and telemetry equipment that may be covered by e.g. the recommendations provided in Recommendation ITU-R SM.329-12.


Theoretically, according to Recommendation ITU-R RA.769-2 the maximum acceptable interference spectrum-power-flux-density (pfd) is -253 dB(W/(Hz.m2)) for the radio-astronomy band near 611 MHz and -255 dB(W/(Hz.m2)) for the radio-astronomy band near 1413 MHz. Since the radio telescope is never pointed directly towards a wind turbine, interferences from all sources on the ground are received through side lobes of the antenna for which a gain of 0 dBi is assumed. The required path loss between wind turbine and radio telescope would be 130 dB for the radio-astronomy band near 611 MHz and 135 dB for the radio-astronomy band near 1413 MHz. Taking into account the terrain and the propagation model of Recommendation ITU-R P.452, the resulting geographical protection distances around the Radio Telescope depending on the terrain properties would be between 7 and 25 km for an assumed hub-height of 140 m .


To estimate WT influence on the radio observations, during the years 2015 and 2016 the radio monitoring services of Munich and Constance of the Federal Network Agency, Germany, performed measurements of electromagnetic radiation at some types of modern three-bladed wind energy plants which are deployed on-shore in Germany. The towers are in pipe construction with hub-heights between 134 and 140 m. The rotor-diameters ranged from 80 to 130 m. The nominal powers were 2.3 MW, 2.4 MW and 3.3 MW.



The physical measurements yielded the following main findings:


▪    The radiation levels of the measured wind turbines would be well below the limits specified in DIN EN 55011 (up to 1 GHz). They were 25 dB to 31 dB below the limits;

▪    The protection areas towards wind turbines necessary to ensure interference-free radio astronomical measurements are much lower than assumed in a worst case scenario based on exploiting the EMC limits in full.



Special attention is drawn to the fact that, especially at 1413 MHz, measurements were only carried out on three wind turbines, although these models are currently the ones most commonly used. The extremely low radiation levels measured at 1413 MHz are not legally binding for manufacturers and operators of wind turbines and should not be assumed to apply to all installed turbines. Yet the measurements do show that interference levels well below the limits in DIN EN 55011 are achievable with state-of-the-art technology and without additional efforts to suppress spurious radiation.


At a distance from WT of 200 m, the received interference power levels of the measured wind turbines were far below the noise levels from other sources (incl. man made noises) that have to be tolerated by telescope operators even today. However, most of the natural and background noise contributions are approximately white and can be effectively reduced by long integration times. As such, the study constitutes a worst-case scenario based on the assumption that, owing to its spectral characteristics, the interference from wind turbines cannot be eliminated during measurements whereas other noise levels can be.


The ASTRON engenders and system astronomers together with the Dutch regulatory agency (AT) made calculations and simulations about the effect of EMI and reflections on the LOFAR core (24 stations) from windfarm at the distance 5 – 10 km consisting from 24 WT. The limit accepted by ASTRON in the covenant is 35 dB below the EN55011 limit of 50 dBuV/m at 10 meters distance, at 100m height, measured in 120kHz BW with RMS detector. The most problematic LOFAR science is Epoch of Reionization with 2000 +hours of observations and slow pulsar research. During the two-week measurement campaign in Sept 2019 researchers found reflection from the blades at DAB frequencies transmitted from Denmark, of course, direct DAB signal from transmitter was stronger. It was very hard to measure levels below 15 dBuV/m and could only be done with LOFAR itself. But Wind Turbine manufacturers succeeded to build this windmill from scratch below the defined EMC limit. When the windmill is idle the level is even 0 dBuV/m.

For remote or ILT stations like Irbene LV614 a 2 km radius should be enough, where people have to inform about the plans to build WT or solar plants. At the distance about 20km from the LOFAR field, the attenuation due to distance and terrain are even with 50dBuV/m more than sufficient to bring it to below the noise in the received signals.


The direct path is always stronger than the reflected path, it means EMI signals are already present in the band. So this gives confidence that standard wind turbines have sufficiently low EMI for a single remote or international LOFAR station.





References:

❏  Winkel, B. and Jessner, A., “Compatibility Between Wind Turbines and the Radio Astronomy Service”, Journal of Astronomical Instrumentation, vol. 8, no. 1, 2019. doi:10.1142/S2251171719400026. https://arxiv.org/abs/1812.04731

❏  S&T Final Report “Measuring the EMI radiation with Lofar at the test turbine at location DEE-2.1 - Windpark De Drentse Monden en Oostermoer”. Reference: ST-WDMO-WTEM-REP-005, Version: 1.2 Date: 19 Nov 2019. https://www.rvo.nl/sites/default/files/2020/01/Bijlage_1_EM_Testing_Eindrapport_deel_1.pdf

❏  ECC Report 321 “Radio frequency test methods, tools and test results for wind turbines in relation to the Radio Astronomy Service”. Approved 2 October 2020 https://docdb.cept.org/download/0ccdddf8-5803/ECC%20Report%20321.pdf

❏  “I-LOFAR, Radio Astronomy and Radio Frequency Interference”. A submission, dated 27th Sept. 2019, made on behalf of the I-LOFAR Consortium to Offaly County Council in relation to the Offaly County Development plan 2021-2027. https://www.offaly.ie/eng/Services/Planning/County-Development-Plan-2021-2027/Stage-1-Pre-Draft/CDP-PD40-ILOFAR-Consortium.pdf

❏  Private discussions with Mr. Menno Norden, systems engineer at the department Astronomy and Operations (A&0) at ASTRON and with Mr. Waleed Madkour, CRAF Frequency Manager at JIVE-ERIC.


Share on other platforms

Other news

By Rota Rulle July 4, 2025
The planets of the Solar System formed from fine interstellar dust particles. As the interstellar cloud (which would later become the Solar System) condensed, the dust particles gradually sticked together. As this process continued in the disk around the proto-Sun, they grew to the size of sand grains, peas, beans, pebbles, etc., until the “dust” the size of flying mountains continued growing by attracting material with their own gravity.
By Rota Rulle June 27, 2025
Ventspils University of Applied Sciences is a regional university of applied sciences where scientific activities are carried out in three strategic specialization areas: In natural sciences – implementing research in the fields of mathematical modelling, optical signal technology, astronomy and astrophysics, space technology and engineering electronics, ICT and electronics In social sciences – conducting research in the areas of entrepreneurship, innovation, and regional economics In the humanities – conducting research in applied linguistics, comparative linguistics, and translation studies In June 2025, the science communication brand researchLatvia paid special attention to the contribution of Ventspils University of Applied Sciences to research activities, emphasising the contribution of Mg. sc. comp. Karina Šķirmante, researcher and lecturer at the Ventspils International Radio Astronomy Centre, to science, technology and astronomy. Ventspils University of Applied Sciences – a university with the largest radio telescope antenna in Northern Europe Although Ventspils University of Applied Sciences will only be 28 years old this year, for most of its existence, it has been home to a world-class research centre – the Ventspils International Radio Astronomy Centre (VSRC). Ventspils University of Applied Sciences has been home to the largest radio telescope antenna in Northern Europe for 21 years. " If the world stands on three pillars, then VeA has four – three faculties and the VSRC. Science is inseparable from education, and higher education must be grounded in scientific principles. It is this close connection between education and science that has ensured the rapid development of VSRC and the Irbene radio telescope complex over the past 20 years. More than 150 students have developed their bachelor's or master's theses at VSRC - either in science or technology development. The majority of VSRC employees are graduates of our university. VSRC has grown into one of the leading scientific institutions in Northern Europe, specialising in astrophysics and space technologies. VSRC conducts international-level scientific research and contributes to technological innovations, bringing Latvia's name to the world. Shortly, radio telescopes will also be used in a completely new direction - in satellite communications, communicating with space satellites near the Moon," says Andris Vaivads , rector of Ventspils University of Applied Sciences. International partners highly value VeA's infrastructure – the radio telescope complex in Irbene is part of the European radio telescope networks (JIVE, ILT) with significant importance in scientific observations. VeA's scientific activities are focused on internationally significant research in collaboration with international partners, including the Swedish Space Corporation and the European Space Agency. In 2024, Ventspils University of Applied Sciences produced 41 publications indexed in Scopus and Web of Science, of which 17 were published in the highest-ranked journals in Q1, and four in Q2. This is an excellent indicator indicating competitive and high-quality research. New researchers are being trained Many employees of the VSRC and the Faculty of Information Technologies work in both structural units, ensuring effective knowledge transfer between researchers and students. Representatives of this field are actively involved in public education throughout Latvia, conducting practical classes in schools and VeA laboratories, as well as giving lectures at the School of Astronomy. The development of a stratospheric probe by third-year students has also become a tradition, attracting public attention and inspiring future researchers. Ventspils University of Applied Sciences students – the most capable young specialists This July, Mārtiņš Leimants , a student in the "Electronics Engineering" study program, will travel to the Dutch city of Noordwijk to start working at the European Space Research and Technology Centre. Mārtiņš is the second Ventspils University of Applied Sciences student to intern at the European Space Agency (ESA) – a place where only the most capable young specialists from around the world have the opportunity to gain experience. In 2022, Rodrigo Laurinovičs went to ESA and spent two years there. If one student at ESA is a significant achievement and recognition, then two already mark a notable trend, confirming the excellence of our study program. Doctoral studies There are currently 22 doctoral students studying and conducting research at Ventspils University of Applied Sciences – 14 students are obtaining a doctorate in social sciences, and eight students in humanities and arts. The Ventspils International Radio Astronomy Centre is a significant research centre that attracts doctoral students and candidates from other universities conducting research in the field of natural sciences. In the 2023/2024 academic year, the first three graduates of the study program "Economics and Entrepreneurship" received their Doctor of Science degrees at Ventspils University of Applied Sciences. Research funding doubled in 2024 Ventspils University of Applied Sciences and the VSRC are actively involved in various international programs and projects. Since 2024, Ventspils University of Applied Sciences has been part of the European university alliance COLOURS, which unites European regional universities from nine countries: France, Spain, Italy, Germany, Poland, Croatia, North Macedonia, and Sweden. In 2024, the total funding received for research projects reached just under € 2.7 million. This is a significant increase of just under 1.5 million euros compared to 2023. The most significant increase in funding in 2024 is observed in the areas of contract work and intellectual property transfer, demonstrating the university's ability to create practically applicable solutions for industry needs. Ventspils University of Applied Sciences focuses on the creation and transfer of high-value-added knowledge, creating a platform where education, science, and innovation meet. With a clear strategic direction, international vision and modern infrastructure, Ventspils University of Applied Sciences and the Ventspils International Radio Astronomy Centre are an essential part not only in the region and Latvia, but also on a global scale! Video with this month's researchLatvia calendar scientist Mg. sc. comp. Karina Šķirmante
By Rota Rulle June 25, 2025
You are kindly invited to attend a scientific seminar that will take place on June 27, 2025 , at Room D407, VeA IZI VSRC . Seminar Programme 10:00 – 11:00 Prof. Valery M. Nakariakov , University of Warwick, UK "A Plasma Orchestra, or Magnetohydrodynamic Waves in the Solar Corona" 11:00 – 12:00 Lunch break 12:00 – 15:00 Scientific seminar “Magnetohydrodynamic Waves in the Solar Corona” as part of the JIV-ERIC National Node Scientific Seminar Series Please confirm your participation by marking your name in the Excel sheet: Participation Sheet You can join in person or online via Google Meet . Google Meet link --- A Plasma Orchestra, or Magnetohydrodynamic Waves in the Solar Corona Valery M Nakariakov (University of Warwick, United Kingdom) The corona of the Sun is the outermost part of the solar atmosphere. The corona is a very hot, fully ionised plasma dominated by the magnetic field. The corona is the birthplace of extreme events of space weather, and a natural laboratory for plasma physics. One of the most fascinated discoveries made with recent high-precision spaceborne imaging telescopes operating in the extreme UV band is the ubiquitous dynamics of the corona in a form of various large-scale wave motions. An example of such an instrument is the Extreme UV imager on the recently launched Solar Orbiter spacecraft. Typical oscillation periods are several minutes, typical wavelengths are tens to hundred thousand kilometres, and typical speeds are from several tens to several thousand kilometres per second, which make the solar coronal waves the largest electromagnetic wave motions resolved simultaneously in time and space, detected in the Universe. The observed waves are confidently interpreted in terms of the magnetohydrodynamic theory. Various plasma structures of the corona support different types of wave modes, allowing for the use of the waves for the plasma diagnostics via the method of magnetohydrodynamic seismology.
By Rota Rulle June 25, 2025
The Erasmus+ program offers the opportunity to participate in an innovative and dynamic learning format – the Blended Intensive Programme (BIP). This format allows both students and staff to explore a specific topic in depth within an international setting, combining virtual learning with a short but intensive five-day on-site component. Students of Ventspils University of Applied Sciences actively take part in these programs – over the past two academic years, 18 students have participated in BIP courses held in Lithuania, Portugal, Spain, and France. From 26 to 30 May, Ventspils University of Applied Sciences hosted its first Erasmus+ Blended Intensive Programme titled “Technology Startup Course”. The course was implemented as part of the “Developing by Experimenting II” module within the “Start-up Management” study program, in cooperation with two COLOURS partner universities – Jan Dlugosz University in Czestochowa (Poland) and University St. Kliment Ohridski Bitola (North Macedonia). During the program, students from Ventspils University collaborated in international teams with peers from Poland, North Macedonia, and Bulgaria to develop innovative, technology-based business ideas. In total, 38 students participated, including 18 international students (six of whom represented COLOURS partner universities), forming 13 project teams. The primary goal of the program was to enhance students' skills in creating innovative, tech-driven business ventures capable of competing in the real-world market. On 30 May, five of the top teams were selected to present their ideas to investors at the TestDevLab headquarters in Riga. The winning team, “SOUNDPACK”, was represented by Ventspils University of Applied Sciences student Ronalds Palacis. The team’s idea focused on using AI to generate fully cohesive, royalty-free sample packs based on natural language prompts, simplifying the workflow for music producers. The Erasmus+ BIP program provided a valuable experience for both students and staff and helped strengthen cooperation with international partner universities. In the next academic year, Ventspils University of Applied Sciences aims to implement two more BIP programs – one for students and one for staff. We encourage all faculties to submit their BIP program ideas by emailing: erasmus@venta.lv
By Rota Rulle June 18, 2025
On June 5, representatives from the Organisation for Economic Cooperation and Development (OECD) and the European Commission visited Ventspils University of Applied Sciences (VUAS) to discuss issues related to the development of academic careers in higher education in Latvia. The purpose of the visit was to gain an understanding of the role, challenges, and opportunities of regional universities, including VUAS, in the implementation of new academic career models. During the meeting, experts met with the university’s management and academic staff to discuss topics such as attracting and retaining academic personnel, career development opportunities, support for professional advancement, and potential collaboration with other institutions in Latvia. The international expert group included Gillian Golden, Project Leader in the OECD Higher Education Policy Team; Thomas Weko, an international higher education expert and researcher at the George Washington Institute of Public Policy (USA); and Kristiāna Egle, a policy analyst in the OECD Higher Education Policy Team. The experts greatly appreciated the opportunity to hear a report from the Executive Director of the Ventspils City Council on the university's role within the city’s ecosystem, the university’s experience and staff perspectives, as well as the opportunity to learn about the university’s development strategies in a regional context. The discussions covered both the challenges and potential solutions that could help improve the development of academic careers in Latvia.
By Rota Rulle June 18, 2025
When Information Technology Meets the Universe Space exploration is becoming increasingly important, expanding humanity’s knowledge of the universe, promoting innovation and technological development, and attracting new talent to science. Her work highlights the importance of combining expertise from various fields to address complex scientific questions. At such a point of cooperation between technology and astronomy is the doctoral candidate Mg. sc. comp. Karina Šķirmante, a leading researcher and lecturer at Ventspils University of Applied Sciences (VeA). Karina’s research activities cover high-performance computing and data processing, focusing on space technology projects. She is actively involved in the European Space Agency’s Comet Interceptor project, which aims to launch a probe in 2029 to study a comet that has never come close to the Sun directly in space for the first time. In preparation for this mission, Karina, together with colleagues from the Ventspils International Radio Astronomy Centre (VSRC) of the Institute of Engineering Sciences of the Estonian Academy of Sciences, is modelling comet activity in the radio frequency band, in collaboration with researchers from the Tartu Observatory (Estonia) and Aalto University (Finland). This international collaboration is helping to develop and calibrate the instruments that will be used during the mission.
Other news