Approved fundamental and applied research project proposals at Ventspils University of Applied Sciences

January 20, 2023

The project proposals prepared by the Engineering Research Institute "Ventspils International Radio Astronomy Center" (ERI VIRAC) of Ventspils University of Applied Sciences for the Latvian Science Council (LZP) grant competition, project No. lzp-2022/1-0083 "A single-baseline radio interferometer in a new age of transient astrophysics" and project No. lzp-2022/1-0017 "Multi-Wavelength Study of Quasi-Periodic Pulsations in Solar and Stellar Flares," were highly evaluated and financially supported by the LZP's decisions on December 20, 2022.


Both projects are being implemented by the Engineering Research Institute "Ventspils International Radio Astronomy Center" (ERI VIRAC) of Ventspils University of Applied Sciences.


Project No. lzp-2022/1-0083 "A single-baseline radio interferometer in a new age of transient astrophysics" is intended as a fundamental research study aimed at creating the Irbene single-baseline radio interferometer (ISBI), which will be capable of detecting radio emission fluctuations related to high-mass star formation regions. The developed ISBI will be used to observe the continuum emission of high-mass protostars and maser emission lines. The obtained results will help choose between currently untested and competing theoretical scenarios proposed to explain the recently discovered variability of radio radiation observed in high-mass star formation regions.


During the implementation of the project, it is planned to deepen the understanding of the eruption formation process, which is believed to follow flares during which high-mass stars accumulate mass. High-cadence observations using the Irbene interferometric system will be organized to study these processes.


The project includes the following tasks:

  • Expand the existing capabilities of the Ventspils radio observatory by using two radio telescopes (32m and 16m in diameter) in a unified system as an interferometer.
  • Improve and automate the planning of astronomical observations and processes related to the acquisition and analysis of astronomical data.
  • Create a list of approximately 30 high-mass protostars whose radio signal emissions will be simultaneously monitored at 6.7 GHz methanol maser lines and radio C bands.
  • Interpret astronomical data by studying the processes of high-mass star formation and development, thereby understanding the formation of massive stars.
  • Organize public lectures and informative events, and publish the achieved results in scientific conferences and leading astronomy journals.


The results obtained during the project implementation will provide answers to unanswered questions about the processes of high-mass star formation. Additionally, the project team aims to deepen the understanding of the eruption formation process, which is believed to follow flares during which high-mass stars accumulate mass. High-cadence observations using the Irbene interferometric system will be organized to study these processes. Such observations require a combination of effective and specific functional technologies, which are not easy to develop nowadays. The unique advantages of the Irbene interferometer provide an opportunity to research short-term variable astrophysical processes.


The project activities are planned to be implemented from January 1, 2023, to December 31, 2025. The total project funding is 300,000.00 euros, and the scientific leader of the project is Ross Alexander Burns, a leading guest researcher at the Engineering Research Institute "Ventspils International Radio Astronomy Center" of Ventspils University of Applied Sciences.


Project No. lzp-2022/1-0017 "Multi-Wavelength Study of Quasi-Periodic Pulsations in Solar and Stellar Flares" is intended as a fundamental research study with the main goals of:

  • Using VSRC instruments to establish a reliable and systematic observation system for solar flares and stellar super-flares;
  • Discovering similarities and differences between the radio emission mechanisms of solar and stellar flares and their quasi-periodic pulsation characteristics;
  • Laying the groundwork for future research in collaboration with radio observatories worldwide.


The research program of the project focuses on the extensive study of the quasi-periodic pulsation (QPP) phenomenon (as an indicator of plasma oscillation dynamics) in solar flares and stellar super-flares. Multi-frequency radio astronomical observations are planned in collaboration with colleagues from the University of Warwick (United Kingdom), using the Ventspils International Radio Astronomy Center (VIRAC) complex in Irbene. The research will focus not only on solar flares but also on widely distributed and actively flaring red dwarf stars. QPP detection and analysis in light curves will be performed by combining traditional and innovative data analysis methods, such as wavelet and empirical mode decomposition analysis. Participants from the United Kingdom, with extensive experience in coronal process research, will provide process modeling and lead data analysis.


The project includes the following tasks:

  • Establish a single-baseline interferometer (using both Irbene radio telescopes RT-16 and RT-32) to conduct a research program on solar and stellar flare observations in the radio frequency band.
  • Create and optimize a set of data analysis tools to describe flare light curves and spectra, and to detect QPP events.
  • Discover similarities and differences between solar and stellar flares in their QPP characteristics, and create a comprehensive statistical overview of flares.
  • Present scientific results by publishing them in prestigious, peer-reviewed scientific journals, giving presentations at international and local conferences, holding an annual international seminar on the project topic, participating in public lectures, and preparing a popular science article.
  • Conduct educational work with school students and university students at the VIZIUM Science and Innovation Center (in Ventspils, Latvia).


The expected results during the project implementation will enable VIRAC to establish a unique research cluster capable of conducting world-class solar flare and stellar super-flare observations and data analysis, complementing the capabilities of the world's leading solar research institutes. A particularly interesting and notable phenomenon characteristic of both solar and stellar flares is QPP in the radio frequency bands, which will be used to identify similarities and differences between solar flares and stellar super-flares, as well as their physical mechanisms.


The project activities are planned to be implemented from January 1, 2023, to December 31, 2025. The total project funding is 300,000.00 euros, and the scientific leader of the project is Valeri Nakariakov, a leading guest researcher at the Engineering Research Institute "Ventspils International Radio Astronomy Center" of Ventspils University of Applied Sciences.

Share on other platforms

Other news

By Rota Rulle February 5, 2026
On January 16 within the framework of the State Research Programme of Ventspils University of Applied Sciences, Professor Una Libkovska, within the framework of the State Research Programme project "Development of evidence-based solutions for the effective improvement of professional competence of adults and assessment of the transfer of its results to practice in Latvia" (VPP-IZM-Education-2023/4-0001), participated in a meeting with entrepreneurs organized by the State Education Development Agency and the Ventspils State City Education Board on opportunities and challenges for adult learning. During the meeting, the opportunities offered by the skills management platform STARS for adult continuing education and professional upskilling were discussed, with a particular focus on the European Union projects "Training for Workers" and "Digital Skills for Experts". The discussions emphasize the importance of employers in providing support to employees in the process of starting training, as well as the need to establish purposeful cooperation between entrepreneurs, local government and educational institutions. VIAA's Department of Adult Education presented the learning opportunities offered by the STARS platform, as well as the necessary support for employed adults to start their studies and the role of the municipality in providing this support. In the second part of the event, meetings were held with municipal specialists and adult education organizers, representatives of youth and cultural work and other interested parties. The discussion discussed ways to strengthen cooperation in adult education, as well as identifying the necessary support from VIAA in reaching out to adults and motivating them to engage in learning. The event brought together more than 20 representatives of business and institutions of Ventspils municipality, who actively participated in discussions, shared their experience and expressed proposals for improving the adult education offer. The meeting reaffirmed that coordinated and targeted cooperation between state institutions, local governments, educational institutions and employers is an essential prerequisite for the effective development of adult skills, strengthening competitiveness and sustainable employment.
By Rota Rulle February 3, 2026
Ventspils University of Applied Sciences invites you to the public defense of Sanita Lasmane’s doctoral thesis, “Analysis and Improvement of Labor Market Assessment Approaches: A Case Study of Latvia,” for the acquisition of a Doctor of Science degree (Ph.D.) in Social Sciences. Scientific Supervisor: Professor Sergejs Hiļķevičs, Dr. phys. The author, S. Lasmane, will present innovative research aimed at adapting labor market assessment approaches specifically to the socio-economic situation in Latvia. The thesis was developed within the joint doctoral study program “Economics and Business” offered by three higher education institutions: Ventspils University of Applied Sciences, Vidzeme University of Applied Sciences, and the RTU Rēzekne Academy. Research Relevance: S. Lasmane’s research offers solutions in two directions of national importance: - A New Human Capital Assessment Approach: A new approach has been developed for the quantitative assessment of human capital at national and regional levels using regularly available data. - Estimation of Cobb-Douglas Production Function Parameters for Latvia: The Cobb-Douglas production function has been adapted to Latvian parameters, assuming that the sum of the coefficients α and β is not equal to 1. This was achieved by using traditional resources—capital and labor—as well as replacing them with potential "invisible agents" in the economy: banks and enterprises. Scientific Reviewers Associate 1.Professor Aija van der Steina, Dr. oec., Vidzeme University of Applied Sciences, Latvia; 2.Professor Sandra Jēkabsone, Dr. oec., University of Latvia, Latvia; 3.Associate Professor Ramutė Narkūnienė, Ph.D., Utena University of Applied Sciences, Lithuania. Time and Venue of the Defense Date: February 25, 2026, at 12:00 PM Location: Ventspils University of Applied Sciences, Inženieru Street 101, Ventspils, LV-3601, Auditorium B4. The doctoral thesis is available for review at the Ventspils University of Applied Sciences Library (Inženieru Street 101, Ventspils) and online at www.venta.lv .
By Rota Rulle February 2, 2026
MarTe 1st Technical Workshop “Physical Modelling for Blue & Green Transitions: Deep-Tech Tools from Lab to Market” Date: 4–5 February 2026 Venue & Format: Hybrid On-site: Ventspils University of Applied Sciences (Ventspils Augstskola) 101A Inženieru Street, Ventspils, LV-3601, Latvia Online: Zoom (with live YouTube translation) Language: English Registration: HERE About the Workshop The MarTe 1st Technical Workshop brings together researchers, industry representatives, startups, and students to explore how modern physical modelling and simulation tools can accelerate innovation in the blue and green economy . Aligned with Marine Technology Excellence Hub for Sustainable Blue Economy in the Baltics ( https://www.marinetechub.eu/ -MarTe) mission, the workshop demonstrates how deep-tech tools such as SolidWorks and COMSOL help transform early-stage ideas into real-world solutions. Through lectures, live demonstrations, and hands-on activities, participants will learn how modelling and simulation reduce development risks, shorten design cycles, and support the transition from laboratory concepts to market-ready technologies. The workshop will highlight practical applications in marine and maritime technologies, renewable energy, hydrogen (H₂-to-X) solutions, and sustainable blue economy value chains , with examples relevant to the Baltic Sea region and beyond. Programme Highlights: Introduction to physical process modelling, CAD-based modelling with SolidWorks and Multiphysics simulations with COMSOL Live demonstrations and hands-on exercises Designed for participants with little or no prior experience in 3D physical modelling. Success stories in deep-tech development from Research to Market Pathways from low TRL to market (TRL 6–7+) Who Should Attend? This workshop is open to: Industry representatives in marine, maritime, and green technologies Researchers and engineers working on applied R&I Startups and entrepreneurs in deep-tech and blue economy sectors Students and early-career innovators interested in simulation tools and applied modelling Participants will gain practical skills , insights into real success stories, and opportunities to connect with the MarTe innovation ecosystem. Why Participate? Learn modern simulation and modelling approaches Discover how to move ideas from lab to market Exchange knowledge with experts from academia and industry Build collaborations in the Baltic Sea blue economy Full agenda will be announced soon. For more information, please follow the MarTe project channels or contact the organizers. Contacts: Vladislavs Bezrukovs Vladislavsb@venta.lv Phone: +37127134283 Baiba Reimane baiba.reimane@venta.lv
By Rota Rulle January 30, 2026
Advanced Diagnostics of Solar and Stellar Flares: STEF Project Successfully Concludes with Lasting Scientific Impact An international research team based at the Ventspils International Radio Astronomy Centre (VIRAC) , Ventspils University of Applied Sciences, has successfully completed the Latvian Science Council–funded project “Multi-wavelength Study of Quasi-Periodic Pulsations in Solar and Stellar Flares (STEF)” (No. lzp-2022/1-0017) . The project has delivered major advances in solar and stellar physics, radio astronomy methodology, and time-domain astrophysics, while establishing a strong foundation for continued international research. Key scientific and technical achievements Over its three-year duration, STEF produced a coherent, high-impact body of results , including 17 peer-reviewed publications in Q1–Q2 international journals , addressing one of the central challenges of modern solar physics: understanding how magnetohydrodynamic (MHD) waves and oscillations modulate energy release in solar and stellar flares. The project significantly advanced: Theoretical modelling of MHD waves , including the effects of thermal misbalance, non-local thermal transport, and boundary conditions on wave damping, persistence, and amplification. Observational diagnostics of quasi-periodic pulsations (QPPs) in solar and stellar flares, strengthening their interpretation as wave-driven phenomena. Helio and asteroseismology , extending oscillation-based magnetic diagnostics from the Sun to solar-like stars. Time-domain radio astronomy , through validated single-dish and interferometric methodologies developed at the Irbene observatory. Observational infrastructure, datasets, and software A major strength of STEF was the integration of theory with instrumentation and data analysis. The project established routine microwave solar observations with the RT-32 radio telescope , producing a curated solar radio observation dataset that includes full-disk mapping and long-term monitoring of individual active regions in multiple frequency bands and circular polarisations. This dataset provides a valuable observational basis for future studies of solar activity, flare precursors, and oscillatory phenomena. In parallel, the project advanced single-baseline interferometric techniques (RT-32–RT-16) for detecting faint, short-lived radio variability associated with stellar flares. To support these studies, the team developed and released an open-source interferometric/VLBI visualisation and inspection tool , enabling interactive time–frequency exploration, rapid identification of radio-frequency interference, and validation of transient candidates in long, high-cadence datasets. In addition, the Warwick project team released the SCOPE software package for statistically robust detection of oscillatory signals using empirical mode decomposition, applicable across astrophysics and other data-intensive disciplines. International collaboration and continuity STEF was embedded in a broad international network, with active collaboration involving observatories and universities across Europe. A strategic partnership with the University of Warwick (United Kingdom) played a central role, including invited lectures, joint workshops, and close interaction between theory, observations, and advanced signal analysis. Although the STEF project has formally concluded, its scientific programme continues and expands . Several new funded projects launched in 2025–2026 directly build on STEF results, ensuring the long-term sustainability of the developed methodologies, software, and international collaborations. References list: Arregui I., Kolotkov D.Y., Nakariakov V. M., "Bayesian evidence for two slow-wave damping models in hot coronal loops", Astronomy and Astrophysics, 677, art. no. A23., 2023, https://doi.org/10.1051/0004-6361/202346834 Belov S. A., Goffrey T., Arber T. D., Kolotkov D. Y., “ Non-Local Thermal Transport Impact on Compressive Waves in Two-Temperature Coronal Loops”, Astronomy and Astrophysics, 693, art. no. A186, 2025, https://doi.org/10.1051/0004-6361/202452938 Belov S. A., Kolotkov D. Y., Nakariakov V. M., Broomhall A. M., “Detecting Quasiperiodic Pulsations in Solar and Stellar Flares with a Neural Network”, The Astrophysical Journal Supplement Series, ApJS 274 31, 2024, https://doi.org/10.3847/1538-4365/ad6f98 Belov S.A., Riashchikov D.I., Kolotkov D.Y., Farahani S.V., Molevich N.E., Bezrukovs V., ”On collective nature of non-linear torsional Alfvén waves”, Monthly Notices of the Royal Astronomical Society, 523 (1), pp. 1464 - 1473, 2023, https://doi.org/10.1093/mnras/stad1480 Berloff N. G., Broomhall A. M., Hookway G. T. , Lund M. N., Millson L. J., Kolotkov D., “Investigating magnetic activity cycles in solar-like oscillators using asteroseismic data from the K2 mission”, Monthly Notices of the Royal Astronomical Society, 546 (3), 2026, https://doi.org/10.1093/mnras/stag092 Bezrukovs D., "Microwave observations of the Sun in Virac: An experience of implementation", Sun and Geosphere, vol.15, issue 2, pp.55-58, ISSN 1819-0839, 2023, http://dx.doi.org/10.31401/sungeo.2022.02.02 Bezrukovs V., et. al., “Effects of the Intraday Variability of the Radio Galaxy Perseus A (3C 84) at a Frequency of 6.5 GHz and Evidence for a Possible FRB Event”, Galaxies, 14(1), 1, 2026, https://doi.org/10.3390/galaxies14010001 Cho K.-S., Kolotkov D. Y., Cho I.-H., Nakariakov V. M., “Frequency-dependent Evolution of Propagating Intensity Disturbances in Polar Plumes”, The Astrophysical Journal, ApJ 992 33, 2025, https://doi.org/10.3847/1538-4357/adfde0 Hejazi S. M., Van Doorsselaere T., Sadeghi M., Kolotkov D.Y., Hermans J., “The effect of thermal misbalance on magnetohydrodynamic modes in coronal magnetic cylinders”, Astronomy and Astrophysics, 694, art. no. A278, 2025, https://doi.org/10.1051/0004-6361/202450731 Kolotkov D. Y., Broomhall A. M., Hasanzadeh A., “Effects of the photospheric cut-off on the p-mode frequency stability”, Monthly Notices of the Royal Astronomical Society 533 (3), pp. 3387–3394, 2024, https://doi.org/10.1093/mnras/stae2015 Kolotkov D.Y., Nakariakov V.M., Cloesen M., “The centroid speed as a characteristic of the group speed of solar coronal fast magnetoacoustic wave trains”, Monthly Notices of the Royal Astronomical Society, 527 (3), pp. 6807 – 6813, 2024, https://doi.org/10.1093/mnras/stad3681 Lim D.,Van Doorsselaere T., Nakariakov V. M., Kolotkov D.Y., Gao Y., Berghmans D., “Undersampling effects on observed periods of coronal oscillations”, Astronomy and Astrophysics, 690, art. no. L8, 2024, https://doi.org/10.1051/0004-6361/202451684 Meadowcroft R.L., Zhong S., Kolotkov D.Y., Nakariakov V. M., “Observation of a propagating slow magnetoacoustic wave in a coronal plasma fan with SDO/AIA and SolO/EUI”, Monthly Notices of the Royal Astronomical Society, 527 (3), pp. 5302 – 5310., 2024, https://doi.org/10.1093/mnras/stad3506 Nakariakov V. M., Zhong S., Kolotkov D.Y., Meadowcroft R.L., Zhong Y., Yuan D., “Diagnostics of the solar coronal plasmas by magnetohydrodynamic waves: magnetohydrodynamic seismology”, Reviews of Modern Plasma Physics, 8 (1), art. no. 19., 2024, https://doi.org/10.1007/s41614-024-00160-9 Nakariakov V. M., Zhong Y., Kolotkov D.Y., “Transition from decaying to decayless kink oscillations of solar coronal loops”, Monthly Notices of the Royal Astronomical Society, 531 (4), pp. 4611 – 4618., 2024, https://doi.org/10.1093/mnras/stae1483 Zhong Y., Kolotkov D.Y., Zhong S., Nakariakov V. M., "Comparison of damping models for kink oscillations of coronal loops", Monthly Notices of the Royal Astronomical Society, 525 (4), pp. 5033 - 5040, 2023, https://doi.org/10.1093/mnras/stad2598 Zhong S., Nakariakov V. M., Kolotkov D. Y., “A 50-Minute Coronal Kink Oscillation and Its Photospheric Counterpart”,The Astrophysical Journal Letters, 993 (L35), 2025, https://doi.org/10.3847/2041-8213/ae122e Zhong S., Nakariakov V.M., Kolotkov D.Y., Chitta L.P., Antolin P., Verbeeck C., Berghmans D., “Polarisation of decayless kink oscillations of solar coronal loops”, Nature Communications, 14 (1), art. no. 5298., 2023, https://doi.org/10.1038/s41467-023-41029-8 Software list: Šteinbergs J., Visualization tool for interferometric data do standard calibration and data visualization of interfereometric data. https://github.com/VIRAC-SPACE/Visualization-tool-for-interferometric-data Kolotkov D., Python tool: scope - Statistical Confidence of Oscillatory Processes with EMD (Empirical Mode Decomposition). https://github.com/Warwick-Solar/scope This project was funded by the Latvian Science Council project “ Multi-Wavelength Study of Quasi-Periodic Pulsations in Solar and Stellar Flares (STEF)” , lzp-2022/1-0017
By Rota Rulle January 26, 2026
An international team of astronomers has successfully completed the IVARS (Interferometer for Variable Astrophysical Radio Sources) project, delivering a new observational capability for studying the formation of massive stars through time-variable radio emission. By combining two radio telescopes at the Irbene Radio Observatory in Latvia into a dedicated single-baseline interferometer, the project has enabled the first sustained, high-cadence monitoring of radio continuum variability in high-mass protostars, carried out simultaneously with maser monitoring. 
By Rota Rulle January 8, 2026
Ventspils University of Applied Sciences Faculty of Translation Studies master's study programme Translation and Terminology keeps expanding its range of international partners by initiating a strategic collaboration with the Austrian company Kaleidoscope . This collaboration will provide university lecturers and students access to modern and AI-based language and terminology management tools, which are essential in today’s digital translation and terminology environment. The collaboration plans to integrate the company’s developed solutions into the study process, providing future specialists with practical skills in working with AI solutions. The Austrian company Kaleidoscope is internationally acknowledged in the field of content management. The company specializes in developing innovative software solutions that help businesses worldwide optimize the translation process and ensure terminology consistency. One of their best-known products is the AI-based platform Quickterm , which is considered as the market leader in terminology management. Kaleidoscope combines decades of experience with modern automation and quality control methods. The company’s goal is to help organizations and educational establishments communicate effectively in a multilingual environment, while reducing costs and improving content accuracy. This collaboration proves the master's study programme’s desire and ability to keep up with the latest trends in the translation and terminology industry. Students and lecturers, working with Kaleidoscope tools, will gain advantages in both the Latvian and international labor market. The first practical lessons are expected to begin in the spring semester.
Other news