RADIOBLOCKS: A New European Consortium to develop Next Generation Technologies for Radio Astronomy Infrastructures

February 2, 2023

The RADIOBLOCKS project, coordinated by JIVE ERIC and including major European research infrastructures for radio astronomy, together with partners from industry and academia, have been granted 10 M€ by the European Commission to develop “common building blocks” for technological solutions beyond state-of-the-art, that will enable a broad range of new science and enhance European scientific competitiveness. The RADIOBLOCKS project will start on 1 March 2023.

 

The RADIOBLOCKS project will take a holistic view of how radio telescopes arrays capture, process, synthesise and analyse cosmic signals and will develop components, technologies and software, applicable to a wide range of instruments, to enable the next major discoveries in radio astronomy.

 

RADIOBLOCKS aims to achieve a maximal boost for the major world-leading research infrastructures in radio astronomy by developing common needed blocks:

 

●  for the development of new correlators, which can efficiently exploit powerful new commercially available accelerator hardware (GPUs). This development will directly benefit the large radio arrays from meter to sub-mm wavelengths;

●  in cutting-edge frontend technologies, addressing the generation and real-time handling of wide band and multi-band data, in particular for the creation of novel detectors and components, both RF and IF, as well as the design of backends, with built-in RFI mitigation;

●  for multipixel (PAF/FPA) receivers, ranging from cm to submm wavelengths, suitable for large single dish facilities, with special relevance for future collaborations with pan-European and global RIs (e.g., SKA-VLBI).

●  for data (post)processing, testing prototype workflows functionality and demonstrating usage of end-to-end simulation tools.

 

"The project RADIOBLOCKS collects the experience and common interests of the radio astronomy community in Europe at large, including several other global parties and industry. For the first time, all will work together to develop the technologies that are necessary for the future evolution of their facilities. This is a paradigm shift, mostly facilitated by the European Commission's Horizon Europe programme", says Dr. Francisco Colomer, director of JIV-ERIC and coordinator of RADIOBLOCKS.

 

The 4-year RADIOBLOCKS project - funded by the Horizon Europe Framework Programme -

involves 33 major European research infrastructures for radio astronomy, together with partners from industry and academia from 9 European countries, Japan, Republic of Korea, South Africa, and the United Kingdom. The engagement with industry to co-develop advanced technologies will increase the partners’ technological levels and strengthen their market positions.

 

The European research infrastructures (RI’s) involved in RADIOBLOCKS are the Joint Institute for VLBI ERIC (JIV-ERIC) and the European VLBI Network (EVN), the Multi Element Remotely Linked Interferometer Network (eMERLIN), the LOw Frequency ARray (LOFAR/ILT, in the process to become LOFAR ERIC), the Northern Extended Millimetre Array (NOEMA), the 100-metre Effelsberg Telescope, the Sardinia 64-m radio telescope, the Yebes 40-metre telescope, the IRAM 30-metre Telescope and also global facilities of European interest, such as the Square Kilometre Array Observatory (SKAO, an ESFRI landmark), the Atacama Large Millimetre Array (ALMA), the Global Millimetre VLBI Array (GMVA), and the Event Horizon Telescope project (EHT).

 

“The RADIOBLOCKS project brings together world-leading academic research and industry experts from across Europe and beyond to co-develop and then exploit new technologies to maximise the science capabilities of current and future radio facilities,” says Prof. Rob Beswick, Head of Science Operations and User Support for e-MERLIN, the UK’s National Radio Astronomy Facility; Deputy Director of the UK SKA Regional Centre and RADIOBLOCKS lead at The University of Manchester.

 

The project builds on the highly consolidated RadioNet consortium, which, since the year 2000, have been supported by the European Commission through their different Framework Programmes. RadioNet has successfully integrated a unique array of capabilities and contributed to the continued advances in radio astronomy, which are recognised as essential in answering key questions in astrophysics.

 

The RADIOBLOCKS project is coordinated by JIV-ERIC, showing its central role as a coordinating research infrastructure bringing together the major research organisation in the radio astronomy field and its expertise coordinating several EC-funded projects in recent years such as the H2020 JUMPING JIVE.

 

For JIVE ERIC and the EVN, RADIOBLOCKS will have a major impact for the development of a next generation Very Long Baseline Interferometry (VLBI) Correlator. The EVN technology roadmap for 2020-2030 highlighted the need for broad-band developments, extending the observing bandwidth by at least to 5 GHz, which also requires recording the data at a rate of up to 32 Gbps, an observing mode that will be fully compatible with the Square Kilometre Array (SKA-MID). Bringing in the SKA-MID, and several other telescopes is the other way to increase the sensitivity of VLBI observations performed by the EVN. This is particularly important for narrow-band phenomena - like Fast Radio Bursts (FRBs) - where the only way of improving the sensitivity and imaging capabilities is increasing the collecting area (i.e., the number of telescopes, distributed evenly on various angular scales). To be able to process these broad-band data for large number of telescopes (>30), a next generation VLBI correlator, including specific modes optimised for processing large fields of view, short transients (microseconds time scale), and high spectral resolution modes, is necessary.

 

During the RADIOBLOCKS project, the VIRAC team will contribute to the development of a software that will be used for data processing in several VLBI networks (EVN (European VLBI Network), ILT (International LOFAR Telescope), ALMA (Atacama Large Millimeter Array), SKA (Square Kilometre Array), EHT (Event Horizon Telescope)) and will be useful for the whole radio astronomy community. It should be underlined that during the project, the data processing algorithms previously developed by the VIRAC team will be improved and applied to the observational data of the EVN and ILT networks. These algorithms are based on the KLT (Karhunen-Loève transform) and SSA (Singular Spectrum Analysis) methodologies. The results of the project will be used for further development of a single-base interferometer using the RT32 - RT16 interferometer in the Irbene radio telescope complex, and the results will allow the development of LOFAR VLBI capabilities.


“RADIOBLOCKS is an ambitious project that will bring together 33 partners from industry and academia from all over the world.” says Dr. Giuseppe Cimò, head of Space and Innovative Applications at JIVE and Project Manager of the RADIOBLOCKS project. “It will be an exciting challenge to help develop the common blocks that European Research Infrastructures will use to create exciting scientific results to answer key questions in astronomy and astrophysics.”

The RADIOBLOCKS project will receive funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No 101093934.

 

Additional information

The RADIOBLOCKS Consortium is comprised by the Joint Institute for Very Long Baseline Interferometry as a European Research Infrastructure Consortium (JIVE-ERIC, NL, Coordinator), Stichting Nederlandse Wetenschappelijk Onderzoek Instituten (ASTRON, NL), European Southern Observatory (ESO, DE), Agencia Estatal Consejo Superior De Investigaciones Cientificas M.P. (CSIC, ES), Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (FRAUNHOFER-IAF, DE), Stichting International LOFAR Telescope (ILT, NL), Institut de Radio Astronomie Millimetrique Societe Civile (IRAM, FR), Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG, DE), Chalmers Tekniska Högskola AB (GARD, SE), Rijksuniversiteit Groningen (RUG, NL), Technische Universiteit Delft (TUD, NL), Universiteit Leiden (ULEI, NL), Ventspils Augstskola (VIRAC, LV), Centro Nacional de Información Geográfica (CNIG, ES), Universite de Bordeaux (UBX, FR), Universität zu Koln (UCO, DE), Syddansk Universitet (SDU DK), Sioux Technologies BV (SIOUX, NL), Istituto Nazionale di Astrofisica (INAF, IT), Observatoire de Paris (OBSPARIS, FR), Lytid (LYTID, ES), TTI Norte, S.L. (TTI NORTE, ES), Stichting Radboud Universiteit (RADBOUD, NL), School of Management and Engineering Vaud HES-SO / University of Applied Sciences and Arts Western Switzerland (HES-SO, CH), Ecole Polytechnique Federale de Lausanne (EPFL, CH), Korea Astronomy and Space Science Institute (KASI, KR), University of Pretoria (UP, SA), Beyond Gravity Schweiz AG (BGC, CH), the University of Manchester (UNIMAN, UK), the Chancellor, Masters and Scholars of the University of Oxford (UOXF, UK), United Kingdom Research and Innovation (UKRI, UK) and the Square Kilometre Array Observatory (SKAOB, UK).

The EVN and JIV-ERIC have recently compiled a detailed scientific vision for VLBI, based on input from the scientific community (VLBI 2020-2030: a scientific roadmap for the next decade -- The future of the European VLBI Network) in the framework of the H2020 JUMPING JIVE project. The scientific priorities presented in that document drive the EVN technological developments.

The European VLBI Network (EVN) is an interferometric array of radio telescopes spread throughout Europe, Asia, South Africa and the Americas that conducts unique, high-resolution, radio astronomical observations of cosmic radio sources. Established in 1980, the EVN has grown into the most sensitive VLBI array in the world, including over 20 individual telescopes, among them some of the world's largest and most sensitive radio telescopes. The EVN is composed of 13 Full Member Institutes and 5 Associated Member Institutes.

The Joint Institute for VLBI ERIC (JIVE) has as its primary mission to operate and develop the EVN data processor, a powerful supercomputer that combines the signals from radio telescopes located across the planet. Founded in 1993, JIVE is since 2015 a European Research Infrastructure Consortium (ERIC) with seven member countries: France, Italy, Latvia, the Netherlands, United Kingdom, Spain and Sweden; additional support is received from partner institutes in China, Germany and South Africa. JIVE is hosted at the offices of the Netherlands Institute for Radio Astronomy (ASTRON) in the Netherlands.


Contact

Giuseppe Cimò

RadioBlocks Project Manager

JIVE Interim Head Space and Innovative Applications Group

cimo@jive.eu

 

Jorge Rivero González

JIVE Science Communications Officer

communications@jive.eu

Share on other platforms

Other news

By Rota Rulle September 9, 2025
On September 1 of this year, Ventspils University of Applied Sciences launched a new European Union (EU) co-funded project “Modernization of the Study Environment of Ventspils University of Applied Sciences”, No. 4.2.1.8/2/25/I/007. The project implementation period is 24 months, until August 31, 2027. The project aims to ensure the modernization of the study environment of Ventspils University of Applied Sciences, which includes the improvement and development of the infrastructure of the bachelor's study program "Computer Science" and the professional bachelor's study program "Electronics Engineering". To ensure high-quality and competitive education, targeted measures will be implemented within the project framework, focusing on the technological modernization of study spaces, enhancing the material and technical base, and introducing information and communication technologies (ICT). These engineering and IT programs are strategically important for the sustainable economic growth of the Ventspils region and the entire country of Latvia, preparing highly qualified specialists to promote digital transformation and technological development. During the project, the infrastructure of laboratories and classrooms will be enhanced to ensure that study rooms are equipped with the latest technologies and meet the standards of modern higher education. The latest technologies and equipment will be purchased and introduced, significantly expanding students' opportunities to work with current industry tools and software, thereby preparing them to work with technologies widely used in the industry. In addition, it is planned to continue adapting the digital infrastructure to modern requirements, allowing for the implementation of the hybrid and distance learning process in accordance with current educational trends. The modernization carried out will significantly improve the quality of studies and compliance with labour market requirements, providing students with the opportunity to acquire practical skills and adapt to the growing requirements of the industry. This project will not only improve the study environment and promote the integration of innovations into the learning process, but will also contribute to the development of Ventspils University of Applied Sciences as a higher education and research center in Latvia and beyond, attracting students from the region and the country, as well as from abroad. The total cost of the project “Modernization of the study environment of Ventspils University of Applied Sciences”, No. 4.2.1.8/2/25/I/007, is 215,083.00 EUR, of which the planned amount of the European Regional Development Fund is 85% of the eligible expenses – 182,820.55 EUR, and the amount of state funding is 15% of the eligible costs – 32,262.45 EUR.
By Martina Bertāne September 3, 2025
We are pleased to invite you to participate in the VIRAC Summer School on Pulsar Observations at Centimetre and Metre Wavelengths: Ventspils, Latvia |September 8–19, 2025 This intensive and inspiring summer school is designed for Master’s students, PhD candidates, and early-career researchers in astronomy and astrophysics. The event is hosted by Ventspils University of Applied Sciences. Key Topics: Pulsar observations with the LOFAR telescope Pulsar astronomy fundamentals Observation planning Pulsar data processing and analysis Venue: Engineering Research Institute – Ventspils International Radio Astronomy Centre, Ventspils University of Applied Sciences, Room 407
By Rota Rulle August 25, 2025
The Latvian Rural Advisory and Education Centre, in cooperation with project partners, one of which is Ventspils University of Applied Sciences, invites you to an online opening seminar on August 27 at 10:00 AM on the new My Farm livestock section, which helps to: accumulate and analyze farm data, monitor animal welfare, plan work and make data-driven decisions, save time in preparing reports. At the seminar: You will learn how this idea originated and why it remains relevant today. You will hear about the experiences and benefits of experts for Latvian livestock farmers. You will see a practical demonstration of how to use the tool on your farm. You will receive answers to your important questions. Questions can be asked in the comments during the live broadcast. Live on Facebook profiles @LLKCOzolnieki and @Manslauks, as well as www.llkc.lv Link to the event: Facebook: https://www.facebook.com/events/1290216356070792 The event is a part of the project No.: 21-00-A01611-000017 "Efficient Environmental and Animal Welfare Farm Monitoring". Project Objective: The long-term goal is to promote sustainability and competitiveness in the Latvian livestock sector, in line with the guidelines of the European Green Deal. In recent years, global environmental and climate issues have become increasingly relevant, and it can be assumed that in the future, consumers will demand products produced in an environmentally friendly manner. These future challenges compel farmers to reassess their current management practices and explore environmental and sustainability issues. To achieve this goal, an innovative farm monitoring system will be developed for the livestock sector, ensuring comprehensive data collection and analysis in one place. This system will promote compliance with animal welfare requirements, facilitate sustainable and environmentally friendly farming practices, and enable the monitoring of daily activities, ultimately reducing the time spent on preparing various reports.
By Rota Rulle August 19, 2025
The European Space Agency (ESA) has opened online registration for the international conference on big data from space, Big Data from Space 2025 (BiDS 2025). This large-scale event will take place for the first time in the Baltic Sea region, in Riga, from 29 September to 3 October. The conference will offer a broad and diverse programme, bringing together leading experts, researchers, and policymakers to discuss the use of satellite data in science, innovation, and the development of solutions that matter to society. Jānis Paiders , Acting State Secretary of the Ministry of Education and Science of Latvia and Deputy State Secretary for Human Capital, Science, and Innovation Policy, highlights: “The fact that the international BiDS 2025 conference is taking place in Latvia marks a significant milestone – this prestigious event is being held in the Baltic Sea region for the first time. It is a testament to Latvia’s vital role in the development of the space sector, as well as the potential of our researchers and companies to apply satellite data for economic growth, societal needs, and the creation of innovative technologies. ” BiDS 2025 programme will include: Workshops at the University of Latvia Academic Centre (29 - 30 September); Panel discussions, presentations, and an exhibition at the National Library of Latvia (1 - 3 October); B2B events, demonstrations, and broad networking opportunities.
By Rota Rulle August 11, 2025
Ventspils University of Applied Sciences Faculty of Translation Studies Bachelor’s degree student of “Translation and Language Technology” Matīss Jansons and Bachelor’s degree student of “Intercultural Communication” Līva Slesare participated in an exciting summer school “Responsible Digitalization: AI, Social Media and their Contribution to a Sustainable Society”, which took place from 21st to 25th of July in Paderborn, Germany. The aim of the summer school was to provide a learning experience about sustainable use of artificial intelligence and digital technologies for the benefit of society, while promoting collaboration, practical innovation and cultural exchange. The summer school program was intense and dynamic – lectures, workshops and discussions led by lecturers and guest lecturers took place throughout the day, covering the practical application of artificial intelligence, its ethical and social aspects, issues of power, prejudice and everyday life. Each day provided new insights and encouraged students to think about the role of technology in the future society. Outside of lectures, students from Latvia, as well as from various other countries, had the opportunity to go on guided tours and get to know the city of Paderborn in Germany and its ancient history, see the world's largest computer museum "Heinz Nixdorf MuseumsForum", as well as have informal conversations and make new contacts. Students admit that the opportunity to work in international teams with participants from several COLOURS alliance universities was very valuable. This diversity promoted the exchange of experience and allowed for different approaches to solving problems related to artificial intelligence. Dr. François Vignale's (Le Mans University) lecture on the identification of AI-generated and biased content also aroused special interest, providing practical knowledge and sparking a discussion about these problems in society. This experience gives students the opportunity to gain new knowledge, opening a broader view of the everyday life of students at other European universities, exchanging opinions and creating contacts and future friendships. Read more about the summer school on the COLOURS website: https://colours-alliance.eu/event/international-summer-school-on-responsible-digitalization-ai-social-media-and-their-contribution-to-a-sustainable-society/
By Rota Rulle July 30, 2025
Today, the field of radio astronomy has experienced a resurgence in ‘transient’ science, with more and more astronomical phenomena found to be active on timescales of months, weeks, and even within a single day. For example, high-mass stars form in short, intense bursts of mass accretion that display active variations on day-long timescales. The use of single-baseline interferometers (two telescopes connected together) has been known in astronomy since the 1940s. However, demand for this observing technique was soon overtaken by the development of interferometers comprising large numbers of radio telescope dishes. As demand for aperture synthesis arrays increased, the time available for each observing programme became more limited. The recent emphasis on transient science has renewed the demand for facilities capable of high-cadence monitoring of brightness variations in radio emission—an area in which the now uncommon single-baseline radio interferometer is particularly well suited. The aim of this project is the development of the Irbene Single-Baseline Interferometer (ISBI), designed to detect variations in the radio emission associated with high-mass star-forming regions. The ISBI will be used to monitor both radio continuum and maser emission from high-mass protostars. This will enable clearer distinctions to be drawn between currently untested and competing theoretical models proposed to explain the enigmatic variability recently linked to the formation of high-mass stars. With recent discoveries confirming rapid accretion bursts in high-mass protostars, time-domain radio astronomy has become a key frontier in understanding the formation of massive stars. These short-lived accretion episodes give rise to measurable variations in both radio continuum and maser emission. However, existing large-scale arrays are often oversubscribed and are not optimised for long-term, targeted monitoring of such sources. “The method will enable clearer distinctions to be drawn between currently untested and competing theoretical models proposed to explain the enigmatic variability recently linked to the formation of high-mass stars.” High-cadence, long-term monitoring, such as that possible by ISBI, greatly benefits from automation, which makes it much easier to carry out long-term, frequent monitoring of space signals, from planning observations to processing the data. Latvian scientists have created a unique set of tools and automated systems for the ISBI, turning it into a one-of-a-kind instrument with capabilities not found anywhere else. ISBI stands out because, unlike single-dish telescopes or large VLBI arrays, it can both detect weak signals and track them regularly over time. This makes it ideal for studying the changing radio emissions of massive star-forming regions, helping researchers understand processes like matter falling onto stars and the jets they eject. Thanks to automation, almost the whole workflow runs smoothly, allowing continuous and efficient monitoring of these fascinating cosmic events.
Other news