Implementation of the ERDF-funded research project "H2-Compression" has been completed at the VIRAC

December 4, 2023

On 30 November, 2023, the Engineering Research Institute "Ventspils International Radio Astronomy Centre" (VIRAC) of Ventspils University of Applied Sciences (VUAS) has completed an important applied research project, which involved four organisations for almost three years: Ventspils University of Applied Sciences (VUAS), VZI APP Institute of Physical Energy, "Ventspils University of Applied Sciences Development Fund" and JSC "LATVO". The project was carried out by a team of 14 researchers, engineers and students.

 

Applied Research Project No 1.1.1.1/20/A/185 "Development of Hydrogen Hydraulic Compression Technology for Hydrogen Fueling Stations (H2- Compression)" was implemented under the European Regional Development Fund (ERDF) Operational Programme "Growth and Employment" 1. 1.1.1.1. within the framework of the 4th round of the measure "Practical oriented research".


A growing number of countries and companies are engaged in intense competition for leadership in clean hydrogen technologies. Today, more than 30 countries have developed or are preparing hydrogen strategies, indicating growing interest in developing hydrogen value chains. It's apparent that hydrogen has the potential to make a significant contribution to three of the most important tasks concerning energy use: sustainable economic development of the European Union, reducing greenhouse gas emissions and curbing air pollution. 


In recent years, the use of hydrogen energy in transport and the concept of a hydrogen economy has benefited from a fresh wave of strong political support. At the same time, rapidly evolving technologies have raised the possibility of using hydrogen as a driver for a future carbon-neutral energy system. At the heart of this initiative is the desire for energy security and independence. The European Union has set an ambitious goal to become the first climate neutral continent by 2050, which is in line with the guidelines of the European Commission.


The research project was aimed at acquiring new knowledge and skills for the development of an innovative technological solution to compress gaseous hydrogen. In this system, low-pressure hydrogen gas is compressed by gradually introducing it into vertically arranged compression cylinders. Compression is achieved by utilizing a liquid piston, which is operated by a high-pressure hydraulic pump. The proposed hydraulic compression technology for hydrogen is designed to serve as a booster compressor in a refueling station. This station can either receive hydrogen brought in by a truck in tubes or produce hydrogen locally through the electrolysis of water in limited quantities. The uniqueness of this solution lies in its adaptability to changing parameters of the inlet pressure of hydrogen, and it allows for the stabilization of the hydrogen accumulation process in the high-pressure buffer reservoir.


During the implementation of the project, all the tasks outlined were successfully completed, including:

  • Analysis of existing technologies and study of the problems arising from hydraulic compression of hydrogen;
  • Establishing a credible numerical model of the hydrogen compression process with a liquid piston, an analysis of the thermodynamic parameters in the system under development and temperature variations during gas compression in the proposed solution;
  • Selection of a working fluid compatible with hydrogen gas, suitable for use in compression;
  • Development of a set of algorithms for controlling compression processes in the hydrogen compression system.
  • Technology development of new compression chamber geometry allowing to reduce gas temperature and foaming inside the cylinder when filling it with working fluid under high pressure;
  • Development of numerical models of working fluid flow in the compression chamber;
  • Development of numerical models and calibration methodology for the digital flow counter;
  • Determination of power consumption for compressing a specified volume of gas.
  • Analysis of appropriate materials for compressors and high-pressure hydrogen storage tanks, capable of withstanding pressures up to 100 MPa;
  • Preparation of documentation for the patenting of technical solutions;
  • Preparation of project results for publication in scientific journals and for presentation at conferences.
  • Selection of industrial partners and adaptation of the technical parameters of the developed system to the users' needs.


The outcome of this project is two new innovative technologies of hydrogen compression, designed for use in refuelling stations for urban transport powered by hydrogen. Within the framework of the project the developed technical solutions might be of particular interest for further commercialisation together with companies dealing with hydrogen compression and development of the hydrogen industry. The proposed concept is especially attractive when combined with the use of green hydrogen produced by electrolysis, fed from wind turbines, solar panels or the electricity grid.


Initially conceptualized as an industrial research endeavor, the project has equipped all participating team members with fresh knowledge and skills in the creation of innovative technological solutions.

 

During the project, obtained results significantly increased the understanding of the field of the hydrogen economy sector and more clearly identified its future prospects. Thanks to this project, the research team joined the Latvijas Hydrogen Alliance. During a year and a half, we regularly informed the association about the ongoing research, shared the project results, searched for potential partners for further co-operation, and always had access to up-to-date information in the field of hydrogen energy. 

 

The novelty and relevance of the project results are confirmed by 2 Latvian patents and a European patent application. Scientific materials have been reported in three articles and two conferences.

 

During the project implementation period, we have also submitted several proposals for other projects related to renewable energy topics, which will allow us to continue research in the field of energy. In addition, an application for a commercialised project is planned to be submitted to the Latvian Investment and Development Agency (LIAA) in the near future. The patents obtained in the framework of the project attracted the interest of the international corporation Atawey, one of the leaders of the hydrogen sector. In November 2023, an auction was held in which Atawey agreed to buy these patents. This action should initiate a closer co-operation between the project team and the industry.

  The "H2-Compression" project was initiated with a keen eye on industry needs, addressing specific challenges in Hydrogen compression. At the beginning of the project, it was intended to develop the technology of hydraulic compression and bring it to TRL 5. This was realised in complete scope during the project implementation. The system and components of the declared technology (hydraulic compression process, control system, required working fluids, compression chamber geometry) were tested under laboratory conditions and in the relevant environment (hydrogen atmosphere).

 

In addition, the research enabled us to develop a new compression chamber geometry and validate it in the laboratory. The development level of the second technological solution has reached TRL 4.

 

The results of the current project have solved technological problems that simplify the production of a hydraulic compressor for the compression of hydrogen. The solutions we have proposed are new and innovative, as well as cheaper to produce than other options currently available worldwide. The technical characteristics of the proposed design adjusted with the requirements for hydrogen fuelling stations and international standards in this field.

 

The project achieved a big step forward by making the technology more practical and useful. It also opened the door for working together with the industry on many new opportunities. The project focused on solving real-world problems and looked at the whole process, making it a key factor in moving Hydrogen forward as a widely used and eco-friendly product.


 

Project PI - VIRAC Senior Researcher Valerijs Bezrukovs, Project Administrative Manager Ieva Rozenberga, Project Executive Principal Investigator Vladislavs Bezrukovs. 


  The total approved project cost is EUR 539 577,35 and is financed from the following financial sources:

  • European Regional Development Fund - EUR 444 018.20;
  • State budget funding of EUR 55090.84;
  • Funding from the Ventspils University of Applied Sciences, the Ventspils University of Applied Sciences Development Fund, the Institute of Physical Energetics and JSC "LATVO" in the amount of EUR 40 468.31.


The duration of the H2-Compression project was 31 months (01.05.2021 - 30.11.2023).

Share on other platforms

Other news

By Rota Rulle September 9, 2025
On September 1 of this year, Ventspils University of Applied Sciences launched a new European Union (EU) co-funded project “Modernization of the Study Environment of Ventspils University of Applied Sciences”, No. 4.2.1.8/2/25/I/007. The project implementation period is 24 months, until August 31, 2027. The project aims to ensure the modernization of the study environment of Ventspils University of Applied Sciences, which includes the improvement and development of the infrastructure of the bachelor's study program "Computer Science" and the professional bachelor's study program "Electronics Engineering". To ensure high-quality and competitive education, targeted measures will be implemented within the project framework, focusing on the technological modernization of study spaces, enhancing the material and technical base, and introducing information and communication technologies (ICT). These engineering and IT programs are strategically important for the sustainable economic growth of the Ventspils region and the entire country of Latvia, preparing highly qualified specialists to promote digital transformation and technological development. During the project, the infrastructure of laboratories and classrooms will be enhanced to ensure that study rooms are equipped with the latest technologies and meet the standards of modern higher education. The latest technologies and equipment will be purchased and introduced, significantly expanding students' opportunities to work with current industry tools and software, thereby preparing them to work with technologies widely used in the industry. In addition, it is planned to continue adapting the digital infrastructure to modern requirements, allowing for the implementation of the hybrid and distance learning process in accordance with current educational trends. The modernization carried out will significantly improve the quality of studies and compliance with labour market requirements, providing students with the opportunity to acquire practical skills and adapt to the growing requirements of the industry. This project will not only improve the study environment and promote the integration of innovations into the learning process, but will also contribute to the development of Ventspils University of Applied Sciences as a higher education and research center in Latvia and beyond, attracting students from the region and the country, as well as from abroad. The total cost of the project “Modernization of the study environment of Ventspils University of Applied Sciences”, No. 4.2.1.8/2/25/I/007, is 215,083.00 EUR, of which the planned amount of the European Regional Development Fund is 85% of the eligible expenses – 182,820.55 EUR, and the amount of state funding is 15% of the eligible costs – 32,262.45 EUR.
By Martina Bertāne September 3, 2025
We are pleased to invite you to participate in the VIRAC Summer School on Pulsar Observations at Centimetre and Metre Wavelengths: Ventspils, Latvia |September 8–19, 2025 This intensive and inspiring summer school is designed for Master’s students, PhD candidates, and early-career researchers in astronomy and astrophysics. The event is hosted by Ventspils University of Applied Sciences. Key Topics: Pulsar observations with the LOFAR telescope Pulsar astronomy fundamentals Observation planning Pulsar data processing and analysis Venue: Engineering Research Institute – Ventspils International Radio Astronomy Centre, Ventspils University of Applied Sciences, Room 407
By Rota Rulle August 25, 2025
The Latvian Rural Advisory and Education Centre, in cooperation with project partners, one of which is Ventspils University of Applied Sciences, invites you to an online opening seminar on August 27 at 10:00 AM on the new My Farm livestock section, which helps to: accumulate and analyze farm data, monitor animal welfare, plan work and make data-driven decisions, save time in preparing reports. At the seminar: You will learn how this idea originated and why it remains relevant today. You will hear about the experiences and benefits of experts for Latvian livestock farmers. You will see a practical demonstration of how to use the tool on your farm. You will receive answers to your important questions. Questions can be asked in the comments during the live broadcast. Live on Facebook profiles @LLKCOzolnieki and @Manslauks, as well as www.llkc.lv Link to the event: Facebook: https://www.facebook.com/events/1290216356070792 The event is a part of the project No.: 21-00-A01611-000017 "Efficient Environmental and Animal Welfare Farm Monitoring". Project Objective: The long-term goal is to promote sustainability and competitiveness in the Latvian livestock sector, in line with the guidelines of the European Green Deal. In recent years, global environmental and climate issues have become increasingly relevant, and it can be assumed that in the future, consumers will demand products produced in an environmentally friendly manner. These future challenges compel farmers to reassess their current management practices and explore environmental and sustainability issues. To achieve this goal, an innovative farm monitoring system will be developed for the livestock sector, ensuring comprehensive data collection and analysis in one place. This system will promote compliance with animal welfare requirements, facilitate sustainable and environmentally friendly farming practices, and enable the monitoring of daily activities, ultimately reducing the time spent on preparing various reports.
By Rota Rulle August 19, 2025
The European Space Agency (ESA) has opened online registration for the international conference on big data from space, Big Data from Space 2025 (BiDS 2025). This large-scale event will take place for the first time in the Baltic Sea region, in Riga, from 29 September to 3 October. The conference will offer a broad and diverse programme, bringing together leading experts, researchers, and policymakers to discuss the use of satellite data in science, innovation, and the development of solutions that matter to society. Jānis Paiders , Acting State Secretary of the Ministry of Education and Science of Latvia and Deputy State Secretary for Human Capital, Science, and Innovation Policy, highlights: “The fact that the international BiDS 2025 conference is taking place in Latvia marks a significant milestone – this prestigious event is being held in the Baltic Sea region for the first time. It is a testament to Latvia’s vital role in the development of the space sector, as well as the potential of our researchers and companies to apply satellite data for economic growth, societal needs, and the creation of innovative technologies. ” BiDS 2025 programme will include: Workshops at the University of Latvia Academic Centre (29 - 30 September); Panel discussions, presentations, and an exhibition at the National Library of Latvia (1 - 3 October); B2B events, demonstrations, and broad networking opportunities.
By Rota Rulle August 11, 2025
Ventspils University of Applied Sciences Faculty of Translation Studies Bachelor’s degree student of “Translation and Language Technology” Matīss Jansons and Bachelor’s degree student of “Intercultural Communication” Līva Slesare participated in an exciting summer school “Responsible Digitalization: AI, Social Media and their Contribution to a Sustainable Society”, which took place from 21st to 25th of July in Paderborn, Germany. The aim of the summer school was to provide a learning experience about sustainable use of artificial intelligence and digital technologies for the benefit of society, while promoting collaboration, practical innovation and cultural exchange. The summer school program was intense and dynamic – lectures, workshops and discussions led by lecturers and guest lecturers took place throughout the day, covering the practical application of artificial intelligence, its ethical and social aspects, issues of power, prejudice and everyday life. Each day provided new insights and encouraged students to think about the role of technology in the future society. Outside of lectures, students from Latvia, as well as from various other countries, had the opportunity to go on guided tours and get to know the city of Paderborn in Germany and its ancient history, see the world's largest computer museum "Heinz Nixdorf MuseumsForum", as well as have informal conversations and make new contacts. Students admit that the opportunity to work in international teams with participants from several COLOURS alliance universities was very valuable. This diversity promoted the exchange of experience and allowed for different approaches to solving problems related to artificial intelligence. Dr. François Vignale's (Le Mans University) lecture on the identification of AI-generated and biased content also aroused special interest, providing practical knowledge and sparking a discussion about these problems in society. This experience gives students the opportunity to gain new knowledge, opening a broader view of the everyday life of students at other European universities, exchanging opinions and creating contacts and future friendships. Read more about the summer school on the COLOURS website: https://colours-alliance.eu/event/international-summer-school-on-responsible-digitalization-ai-social-media-and-their-contribution-to-a-sustainable-society/
By Rota Rulle July 30, 2025
Today, the field of radio astronomy has experienced a resurgence in ‘transient’ science, with more and more astronomical phenomena found to be active on timescales of months, weeks, and even within a single day. For example, high-mass stars form in short, intense bursts of mass accretion that display active variations on day-long timescales. The use of single-baseline interferometers (two telescopes connected together) has been known in astronomy since the 1940s. However, demand for this observing technique was soon overtaken by the development of interferometers comprising large numbers of radio telescope dishes. As demand for aperture synthesis arrays increased, the time available for each observing programme became more limited. The recent emphasis on transient science has renewed the demand for facilities capable of high-cadence monitoring of brightness variations in radio emission—an area in which the now uncommon single-baseline radio interferometer is particularly well suited. The aim of this project is the development of the Irbene Single-Baseline Interferometer (ISBI), designed to detect variations in the radio emission associated with high-mass star-forming regions. The ISBI will be used to monitor both radio continuum and maser emission from high-mass protostars. This will enable clearer distinctions to be drawn between currently untested and competing theoretical models proposed to explain the enigmatic variability recently linked to the formation of high-mass stars. With recent discoveries confirming rapid accretion bursts in high-mass protostars, time-domain radio astronomy has become a key frontier in understanding the formation of massive stars. These short-lived accretion episodes give rise to measurable variations in both radio continuum and maser emission. However, existing large-scale arrays are often oversubscribed and are not optimised for long-term, targeted monitoring of such sources. “The method will enable clearer distinctions to be drawn between currently untested and competing theoretical models proposed to explain the enigmatic variability recently linked to the formation of high-mass stars.” High-cadence, long-term monitoring, such as that possible by ISBI, greatly benefits from automation, which makes it much easier to carry out long-term, frequent monitoring of space signals, from planning observations to processing the data. Latvian scientists have created a unique set of tools and automated systems for the ISBI, turning it into a one-of-a-kind instrument with capabilities not found anywhere else. ISBI stands out because, unlike single-dish telescopes or large VLBI arrays, it can both detect weak signals and track them regularly over time. This makes it ideal for studying the changing radio emissions of massive star-forming regions, helping researchers understand processes like matter falling onto stars and the jets they eject. Thanks to automation, almost the whole workflow runs smoothly, allowing continuous and efficient monitoring of these fascinating cosmic events.
Other news